Skip to main content

Fossils with Little Relief: Using Lasers to Conserve, Image, and Analyze the Ediacara Biota

  • Chapter
  • First Online:
Quantifying the Evolution of Early Life

Part of the book series: Topics in Geobiology ((TGBI,volume 36))

Abstract

Fifty years have now passed since the discovery of Charnia masoni and Charniodiscus concentricus in Charnwood Forest, UK. But what is Charnia? And how was it related to the great explosion of animal fossils at the base of the Cambrian that it immediately predates? Recent studies focussing on the growth dynamics and morphology of the group have been greatly aided by the use of innovative photographic and laser scanning techniques that allow the fossils to be analyzed to new levels of detail. Laser methods allow us to build a virtual map of each major fossil type that can then be viewed and rotated in three dimensions. Laser scanning can be undertaken up to a maximum precision of 1/20 mm. Lasers can be applied in the laboratory to collected specimens, or casts, or alternatively directly in the field to in situ specimens when working within fossil conservation areas. Taking laser scans of fossils is completely non-invasive, even unlike casting, the chemicals involved in which can damage delicate fossil surfaces. It is now being seen as a major new tool to aid in the preservation of critical fossil data. Where specimens remain in situ in the field, laser scans can be used to monitor the degradation of the fossils. Laser-based conservation of key fossil sites and specimens in England and Newfoundland is now being planned. We have applied this technique to critical fossil cites in Charnwood Forest and to key Ediacaran fossils from the UK, Newfoundland, Australia, and Russia, including Ivesheadia, Fractofusus, Charnia, Charniodiscus, Bradgatia, and Dickinsonia. Further, we shall review the ever expanding application of laser scanning techniques to a variety of paleontological problems exemplified by several diverse case studies, from dinosaur biomechanics to hexapod taxonomy. Laser scanning is increasingly been seen as a game changing technique in paleontology, that can not only conserve fossils and help with their analysis but also to widen access to highly restricted and critically important fossils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antcliffe JB, Brasier MD (2008) Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51:11–26

    Article  Google Scholar 

  • Barthel KW (1978) Solnhofen. Ein Blick in die Erdgeschichte. Ott, Thun

    Google Scholar 

  • Bates KT, Rarity F, Manning PL, Hodgetts D, Vila B, Oms O, Galobart A, Gawthorpe RL (2008) High-resolution LiDAR and photogrammetric survey of the Fumanya dinosaur tracksites (Catalonia): implications for the conservation and interpretation of geological heritage sites. J Geol Soc Lond 165:115–127

    Article  Google Scholar 

  • Bates KT, Manning PL, Hodgetts D, Sellers WI (2009) Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLoSONE 4:e4532. doi:10.1371/journal.pone.0004532

    Google Scholar 

  • Béthoux O, Mcbride J, Maul C (2004) Surface laser scanning on fossil insects. Palaeontology 47:13–19

    Article  Google Scholar 

  • Boynton HE, Ford TD (1995) Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geol 13:165–182

    Google Scholar 

  • Brasier MD, Antcliffe JB (2008) Dickinsonia from Ediacara: a new look at morphology and body construction. Palaeogeogr Palaeoclimatol Palaeoecol 270:311–323

    Article  Google Scholar 

  • Brasier MD, Antcliffe JB (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J Geol Soc Lond 166:363–384

    Article  Google Scholar 

  • Brasier MD, Antcliffe JB, Callow RHT (2010) Taphonomy in the Ediacaran interval. In: Allison PA, Bottjer D (eds) Taphonomy: bias and process through time. Springer, Dordrecht

    Google Scholar 

  • Breithaupt BH, Matthews NA, Noble TA (2004) An integrated approach to three-dimensional data collection of dinosaur tracksites in the Rocky Mountain West. Ichnos 11:11–26

    Article  Google Scholar 

  • Callow RHT, Brasier MD (2009) A solution to Darwin’s Dilemma of 1859: exceptional preservation in Salter’s material from the Ediacaran Longmyndian Supergroup, England. J Geol Soc 166:1–4

    Article  Google Scholar 

  • Fedonkin MA, Ivantsov AYu, Lenov MV, Lipps JH, Serezhnikova EA, Malyutin EI, Khan YV (2009) Paleo-piracy endangers Vendian (Ediacaran) fossils in the White Sea – Arkhangelsk region of Russia. In: Lipps JH, Granier BRC (eds) PaleoParks – The protection and conservation of fossil sites worldwide. Carnets de Géologie/Notebooks on Geology, Brest, Book 2009/03, pp 103–111

    Google Scholar 

  • Ford TE (1958) Precambrian fossils from Charnwood Forest. Proc Yorks Geol Soc 31:211–217

    Article  Google Scholar 

  • Gehling JG (1991) The case for the Ediacaran fossil roots to the metazoan tree. Geol Soc Ind Mem 20:181–224

    Google Scholar 

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:40–57

    Article  Google Scholar 

  • Glaessner MF (1958) New fossils from the base of the Cambrian in South Australia. Trans R Soc S Aust 81:185–188

    Google Scholar 

  • Glaessner MF (1966) Precambrian palaeontology. Earth Sci Rev 1:29–50

    Article  Google Scholar 

  • Glaessner MF (1984) The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge, 256 pp

    Google Scholar 

  • Glaessner MF, Daily B (1959) The geology and late Precambrian fauna of the Ediacara fossil reserve. Rec S Aust Mus 13:369–410, Plates XLII – XLVII

    Google Scholar 

  • Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599–628

    Google Scholar 

  • Grazhdankin D (2003) Structure and depositional environment of the Vendian Complex in the Southeastern White Sea area. Stratigr Geol Correl 11:313–331

    Google Scholar 

  • Grazhdankin D (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:203–221

    Article  Google Scholar 

  • Grazhdankin D, Seilacher A (2002) Underground Vendobionta from Namibia. Palaeontology 45:57–78

    Article  Google Scholar 

  • Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142:571–582

    Article  Google Scholar 

  • Hagadorn J, Bottjer DJ (1997) Wrinkle structures: microbially-mediated sedimentary structures common in subtidal silicilastic settings at the Proterozoic-Phanerozoic transition. Geology 25:1047–1050

    Article  Google Scholar 

  • Hammer Ø, Bengtson S, Malzbender T, Gelb D (2002) Imaging fossils using reflectance ­transformation and interactive manipulation of virtual light sources. Palaeontol Electron 5. http://palaeo-electronica.org/paleo/2002_1/fossil/issue1_02.htm

  • Hou XG, Aldrdige RJ, Bergstrom J, Siveter DJ, Siveter DJ, Feng XH (2004) The Cambrian fossils of Chengjiang, China, The flowering of early animal life. Blackwell Science, Oxford, 256 p

    Google Scholar 

  • Jenkins RJF (1985) The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Palaeobiology 11:336–355

    Google Scholar 

  • Jenkins RJF (1992) Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum Press, New York, N.Y. pp 131–176

    Google Scholar 

  • Kuepp H (1977) Ultrafazies und Genese der Solnhofener Plattenkalke (Oberer Malm, Südliche Frankenalb). Abh Naturhist Ges Nürnberg 37:128

    Google Scholar 

  • Liu AG, Mcilroy D, Antcliffe JB, Brasier MD (2010) Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology. Article published online: 22 DEC 2010. DOI: 10.1111/j.1475-4983.2010.01024.x

  • Narbonne GM (2004) Modular construction in the Ediacara biota. Science 305:1141–1148

    Article  Google Scholar 

  • Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442

    Article  Google Scholar 

  • Narbonne GM, Saylor BZ, Grotzinger JP (1997) The youngest Ediacaran fossils from Southern Africa. J Paleontol 71:953–967

    Google Scholar 

  • Pflug HD (1970) Zur Fauna der Nama-Schichten in Sudwest-Afrika I, II. Palaeontogr. Abt. A, 134 (4–6), 226–262; 135 (3–6), 198–230. [in German]

    Google Scholar 

  • Pflug HD (1972) The Phanerozoic-cryptozoic boundary and the origin of Metazoa. In: 24th International Geological Congress, Montreal. Section 1: Precambrian geology, pp 58–67

    Google Scholar 

  • Rayfield EJ, Norman DB, Horner CC, Horner JR, Smith PM, Thomason JJ, Upchurch P (2000) Cranial design and function in a large theropod dinosaur. Nature 409:1033–1037

    Article  Google Scholar 

  • Rayfield EJ, Norman DB, Upchurch P (2002) Prey attack by a large theropod dinosaur. Nature 416:388–388

    Article  Google Scholar 

  • Seilacher A (1984) Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? In: Holland HD, Trendal AF (eds) Patterns of change in earth evolution. Springer, Berlin/Heidelberg, pp 159–168

    Chapter  Google Scholar 

  • Seilacher A (1985) Discussion of Precambrian Metazoa. Philos Trans R Soc Lond B 311:47–48

    Article  Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Seilacher A (1992) Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J Geol Soc Lond 149:607–613

    Article  Google Scholar 

  • Viohl G (1990) Taphonomy of Fossil-Lagerstätten. Solnhofen Lithographic Limestones. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell Science, Oxford, pp 285–289

    Google Scholar 

  • Vonnegut K (2005) A man without a country. Seven Stories, New York, 192pp

    Google Scholar 

  • Wade M (1968) Preservation of soft bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia 1:238–267

    Article  Google Scholar 

  • Wade M (1972) Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology 15:197–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Antcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Antcliffe, J.B., Brasier, M.D. (2011). Fossils with Little Relief: Using Lasers to Conserve, Image, and Analyze the Ediacara Biota. In: Laflamme, M., Schiffbauer, J., Dornbos, S. (eds) Quantifying the Evolution of Early Life. Topics in Geobiology, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0680-4_9

Download citation

Publish with us

Policies and ethics