Skip to main content

The Role of Myofibroblasts in Communicating Tumor Ecosystems

  • Chapter
  • First Online:
  • 1776 Accesses

Part of the book series: The Tumor Microenvironment ((TTME,volume 4))

Abstract

Invasive growth of a tumor occurs within an ecosystem where a continuous communication exists between cancer cells and a wide network of tumor-associated host cells. Secretory factors from the cancer cells activate the recruitment of host cells, both near to and far from the primary tumor site, as well as promote the departure of cancer- and host cells to distant tissues. The present review focuses on the prominent role of myofibroblasts in local and distant ecosystems namely the primary tumor, the bone marrow, the circulation, the sites of lymph node and of distant metastases and the nervous system. We believe that there exist distinct types of myofibroblasts with distinct reaction patterns that affect invasive tumor growth in different ways. Mathematical models predict that the specific conditions in local ecosystems determine the invasive phenotype of a tumor. Experimental cell culture models incorporating cancer cells, primary tumor-derived myofibroblasts and matrix proteins in a three-dimensional context confirm the pro-invasive activity of myofibroblasts. New methodologies will facilitate the direct observation of invasive cells including their interaction with myofibroblasts in clinically relevant ecosystems. A better understanding of the local and distant tumor ecosystems may help us to design personalized strategies in the treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  • Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8:227–234

    Article  PubMed  CAS  Google Scholar 

  • Anderson AR, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127:905–915

    Article  PubMed  CAS  Google Scholar 

  • Bacac M, Provero P, Mayran N, Stehle JC, Fusco C, Stamenkovic I (2006) A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PLoS One 1:e32

    Article  PubMed  Google Scholar 

  • Barth PJ, Ebrahimsade S, Ramaswamy A, Moll R (2002) CD34+ fibrocytes in invasive ductal carcinoma, ductal carcinoma in situ, and benign breast lesions. Virchows Arch 440:298–303

    Article  PubMed  CAS  Google Scholar 

  • Bearer EL, Lowengrub JS, Frieboes HB, Chuang YL, Jin F, Wise SM, Ferrari M, Agus DB, Cristini V (2009) Multiparameter computational modeling of tumor invasion. Cancer Res 69:4493–4501

    Article  PubMed  CAS  Google Scholar 

  • Beck AH, Espinosa I, Gilks CB, van de Rijn M, West RB (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601

    Article  PubMed  CAS  Google Scholar 

  • Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870

    Article  PubMed  CAS  Google Scholar 

  • Borchers AH, Steinbauer H, Schafer BS, Kramer M, Bowden GT, Fusenig NE (1997) Fibroblast-directed expression and localization of 92-kDa type IV collagenase along the tumor-stroma interface in an in vitro three-dimensional model of human squamous cell carcinoma. Mol Carcinog 19:258–266

    Article  PubMed  CAS  Google Scholar 

  • Carragher NO (2009) Profiling distinct mechanisms of tumour invasion for drug discovery: imaging adhesion, signalling and matrix turnover. Clin Exp Metastasis 26:381–397

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99:12877–12882

    Article  Google Scholar 

  • Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi JT, van de Rijn M, Botstein D, Brown PO (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  Google Scholar 

  • Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, Dai H, He YD, van’t Veer LJ, Bartelink H, van de Rijn M, Brown PO, van de Vijver MJ (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 102:3738–3743

    Article  PubMed  CAS  Google Scholar 

  • Daly AJ, McIlreavey L, Irwin CR (2008) Regulation of HGF and SDF-1 expression by oral fibroblasts—implications for invasion of oral cancer. Oral Oncol 44:646–651

    Article  PubMed  CAS  Google Scholar 

  • de Jonge MJ, Dumez H, Verweij J, Yarkoni S, Snyder D, Lacombe D, Marreaud S, Yamaguchi T, Punt CJ, van Oosterom A (2006) Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. Eur J Cancer 42:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Denys H, Derycke L, Hendrix A, Westbroek W, Gheldof A, Narine K, Pauwels P, Gespach C, Bracke M, De Wever O (2008) Differential impact of TGF-beta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Lett 266:263–274

    Article  PubMed  CAS  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  PubMed  CAS  Google Scholar 

  • De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018

    PubMed  CAS  Google Scholar 

  • De Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    Article  PubMed  CAS  Google Scholar 

  • De Wever O, Hendrix A, De Boeck A, Westbroek W, Braems G, Emami S, Sabbah M, Gespach C, Bracke M (2010) Modeling and quantification of cancer cell invasion through collagen type I matrices. Int J Dev Biol 54(5):887–896

    Google Scholar 

  • Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  PubMed  CAS  Google Scholar 

  • Eyden B (2005) The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part I—normal and reactive cells. J Submicroscop Cytol Pathol 37:109–204

    CAS  Google Scholar 

  • Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    Article  PubMed  CAS  Google Scholar 

  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  PubMed  CAS  Google Scholar 

  • Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Garabedian EM, Humphrey PA, Gordon JI (1998) A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A 95:15382–15387

    Article  PubMed  CAS  Google Scholar 

  • Genin O, Rechavi G, Nagler A, Ben-Itzhak O, Nazemi KJ, Pines M (2008) Myofibroblasts in pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment? Neoplasia 10:940–948

    PubMed  CAS  Google Scholar 

  • Hasebe T, Tsuda H, Hirohashi S, Shimosato Y, Tsubono Y, Yamamoto H, Mukai K (1998) Fibrotic focus in infiltrating ductal carcinoma of the breast: a significant histopathological prognostic parameter for predicting the long-term survival of the patients. Breast Cancer Res Treat 49:195–208

    Article  PubMed  CAS  Google Scholar 

  • Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309:232–240

    Article  PubMed  CAS  Google Scholar 

  • Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J Jr, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  • Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R (2001) A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 266:74–86

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356

    Article  PubMed  CAS  Google Scholar 

  • Lehn CN, Rapoport A (1994) The desmoplastic lymph node reaction as a prognostic factor of cancer of the tongue and floor of the mouth. Sao Paulo Med J 112:591–596

    PubMed  CAS  Google Scholar 

  • Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD (2008) Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456:989–992

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2:201–209

    Article  PubMed  CAS  Google Scholar 

  • Mareel M, Oliveira MJ, Madani I (2009) Cancer invasion and metastasis: interacting ecosystems. Virchows Arch 454:599–622

    Article  PubMed  CAS  Google Scholar 

  • McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA, Weinberg RA (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  PubMed  CAS  Google Scholar 

  • McGaha TL, Kodera T, Spiera H, Stan AC, Pines M, Bona CA (2002) Halofuginone inhibition of COL1A2 promoter activity via a c-Jun-dependent mechanism. Arthritis Rheum 46:2748–2761

    Article  PubMed  CAS  Google Scholar 

  • Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90

    Article  PubMed  CAS  Google Scholar 

  • Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30:589–597

    Article  PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Pernick NL, Adsay V, Carolin KA, Philip PA, Sipierski S, Bouwman DL, Kosir MA, White M, Visscher DW (2003) Histopathologic evidence of tumor regression in the axillary lymph nodes of patients treated with preoperative chemotherapy correlates with breast cancer outcome. Ann Surg Oncol 10:734–739

    Article  PubMed  Google Scholar 

  • Nystrom ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF (2005) Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 205:468–475

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Tsuburaya A, Kameda Y, Yoshikawa T, Cho H, Tsuchida K, Hasegawa S, Noguchi Y (2008) Prognostic value of extracapsular invasion and fibrotic focus in single lymph node metastasis of gastric cancer. Gastric Cancer 11:160–167

    Article  PubMed  CAS  Google Scholar 

  • Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26:634–642

    Article  PubMed  CAS  Google Scholar 

  • Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR, Lovat LB, Bartfai T, Alanine A, Hertel C, Hoffmann T, Jakob-Roetne R, Norcross RD, Kemp JA, Yamamura K, Suzuki M, Taylor GW, Murray S, Thompson D, Purvis A, Kolstoe S, Wood SP, Hawkins PN (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259

    Article  PubMed  CAS  Google Scholar 

  • Pilling D, Buckley CD, Salmon M, Gomer RH (2003) Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol 171:5537–5546

    PubMed  CAS  Google Scholar 

  • Pilling D, Tucker NM, Gomer RH (2006) Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol 79:1242–1251

    Article  PubMed  CAS  Google Scholar 

  • Pilling D, Buckley CD, Salmon M, Gomer RH (2007) Serum amyloid P and fibrosis in systemic sclerosis: comment on the article by Tennent et al. Arthritis Rheum 56:4229; author reply 4229–4230

    Article  PubMed  Google Scholar 

  • Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, van de Wiele T (2009) The intestinal environment in health and disease—recent insights on the potential of intestinal bacteria to influence human health. Curr Pharm Des 15:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite AE, Shigemitsu H, Kanangat S (2004) Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 16:733–738

    Article  PubMed  Google Scholar 

  • Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:38

    Article  PubMed  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    Article  PubMed  Google Scholar 

  • Reilly JT, Nash JR (1988) Vitronectin (serum spreading factor): its localisation in normal and fibrotic tissue. J Clin Pathol 41:1269–1272

    Article  PubMed  CAS  Google Scholar 

  • Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast-cancer—recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth. J Clin Investig 95:859–873

    Article  PubMed  Google Scholar 

  • Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19

    Article  PubMed  CAS  Google Scholar 

  • Schurch W, Seemayer TA, Lagace R (1981) Stromal myofibroblasts in primary invasive and metastatic carcinomas. A combined immunological, light and electron microscopic study. Virchows Arch A Pathol Anat Histol 391:125–139

    Article  PubMed  CAS  Google Scholar 

  • Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Sheffer Y, Leon O, Pinthus JH, Nagler A, Mor Y, Genin O, Iluz M, Kawada N, Yoshizato K, Pines M (2007) Inhibition of fibroblast to myofibroblast transition by halofuginone contributes to the chemotherapy-mediated antitumoral effect. Mol Cancer Ther 6:570–577

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Hirokawa M, Wakatsuki S, Sano T (2002) Metastatic adenocarcinoma of the lymph node: peculiar desmoplasia mimicking intravenous metastasis. Histopathology 41:566–567

    Article  PubMed  CAS  Google Scholar 

  • Tennent GA, Dziadzio M, Triantafillidou E, Davies P, Gallimore JR, Denton CP, Pepys MB (2007) Normal circulating serum amyloid P component concentration in systemic sclerosis. Arthritis Rheum 56:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Thariat J, Ahamad A, El-Naggar AK, Williams MD, Holsinger FC, Glisson BS, Allen PK, Morrison WH, Weber RS, Ang KK, Garden AS (2008) Outcomes after radiotherapy for basaloid squamous cell carcinoma of the head and neck: a case-control study. Cancer 112:2698–2709

    Article  PubMed  Google Scholar 

  • Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13:2082–2090

    Article  PubMed  CAS  Google Scholar 

  • Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8:2912–2923

    PubMed  CAS  Google Scholar 

  • Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1:113–129

    Article  PubMed  Google Scholar 

  • Wels J, Kaplan RN, Rafii S, Lyden D (2008a) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  CAS  Google Scholar 

  • Wels J, Kaplan RN, Rafii S, Lyden D (2008b) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904

    Article  PubMed  CAS  Google Scholar 

  • Yee KO, Connolly CM, Pines M, Lawler J (2006) Halofuginone inhibits tumor growth in the polyoma middle T antigen mouse via a thrombospondin-1 independent mechanism. Cancer Biol Ther 5:218–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fund for Scientific Research-Flanders (Brussels, Belgium), O. De Wever is a post-doctoral researcher and A. De Boeck is a doctoral researcher supported by Fund for Scientific Research-Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier De Wever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Wever, O., De Boeck, A., Demetter, P., Mareel, M., Bracke, M. (2011). The Role of Myofibroblasts in Communicating Tumor Ecosystems. In: Mueller, M., Fusenig, N. (eds) Tumor-Associated Fibroblasts and their Matrix. The Tumor Microenvironment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0659-0_4

Download citation

Publish with us

Policies and ethics