Skip to main content

Integrin-Extracellular Matrix Interactions

  • Chapter
  • First Online:
Tumor-Associated Fibroblasts and their Matrix

Part of the book series: The Tumor Microenvironment ((TTME,volume 4))

  • 1794 Accesses

Abstract

The extracellular matrix is an essential component of the tumor microenvironment that promotes tumor development and metastasis. Fibroblasts, endothelial cells and other stromal cells deposit extracellular matrix and growth factors that promote the growth and spread of cancer cells. Changes in the composition or architecture of the extracellular matrix within tumors can alter integrin expression and function and promote metastatic progression, angiogenesis and lymphangiogenesis. Since integrins and extracellular matrix molecules provide tumor cells with survival signals, increased blood flow and avenues for metastatic escape, suppression of integrin or extracellular matrix protein expression or function may be useful in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev Mol Cell Biol 8:464–478

    Article  CAS  Google Scholar 

  • Arnaout MA, Mahalingam B, Xiong JP (2005) Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21:381–410

    Article  PubMed  CAS  Google Scholar 

  • Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617

    Article  PubMed  CAS  Google Scholar 

  • Ayad S, Boot-Handford RP, Humphries MJ, Kadler KE, Shuttleworth CA (1994) The extracellular matrix. Academic, San Diego

    Google Scholar 

  • Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all [alpha]v integrins. Cell 95:507–519

    Article  PubMed  CAS  Google Scholar 

  • Beglova N, Blacklow SC, Takagi J, Springer TA (2002) Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct Biol 9:282–287

    Article  PubMed  CAS  Google Scholar 

  • Beier UH, Holtmeier C, Weise JB, Gorogh T (2007) Fibronectin suppression in head and neck cancers, inflammatory tissues and the molecular mechanisms potentially involved. Int J Oncol 30:621–629

    PubMed  CAS  Google Scholar 

  • Bhaskar V, Zhang D, Fox M, Seto P, Wong MH, Wales PE, Powers D, Chao DT, Dubridge RB, Ramakrishnan V (2007) A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J Transl Med 5:61

    Article  PubMed  Google Scholar 

  • Bhaskar V, Fox M, Breinberg D, Wong MH, Wales PE, Rhodes S, DuBridge RB, Ramakrishnan V (2008) Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Invest New Drugs 26:7–12

    Article  PubMed  CAS  Google Scholar 

  • Boudreau NJ, Varner JA (2004) The homeobox transcription factor Hox D3 promotes integrin [alpha]5[beta]1 expression and function during angiogenesis. J Biol Chem 279:4862–4868

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994a) Requirement of vascular integrin [alpha]v[beta]3 for angiogenesis. Science 264:569–571

    Article  CAS  Google Scholar 

  • Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994b) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  Google Scholar 

  • Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Klemke RL, Schon S, Lewis JM, Schwartz MA, Cheresh DA (1997) Insulin-like growth factor receptor cooperates with integrin alpha v beta 5 to promote tumor cell dissemination in vivo. J Clin Invest 99:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 42:932–936

    Article  Google Scholar 

  • Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC (2007) Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13:496–510

    Article  PubMed  CAS  Google Scholar 

  • Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18:1232–1242

    Article  PubMed  Google Scholar 

  • Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, Tarin D, Shattil SJ, Cheresh DA (2009) An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med (in press)

    Google Scholar 

  • Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584

    Article  PubMed  CAS  Google Scholar 

  • Ferreira M, Fujiwara H, Morita K, Watt FM (2009) An activating beta1 integrin mutation increases the conversion of benign to malignant skin tumors. Cancer Res 69:1334–1342

    Article  PubMed  CAS  Google Scholar 

  • Figlin RA, Kondagunta GV, Yazji S, Motzer RJ, Bukowski RM (2006) Phase II study of volociximab (M200), an [alpha]5[beta]1 anti-integrin antibody in refractory metastatic clear cell renal cell cancer (RCC). J Clin Oncol ASCO Annu Meeting Proc 24:4535

    Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, Chang S, Cheresh DA (1996) Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 93:9764–9769

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Ponce ML, Thill M, Yuan P, Wang NS, Csaky KG (2007) Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest Ophthalmol Vis Sci 48:5184–5190

    Article  PubMed  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Garmy-Susini B, Jin H, Zhu Y, Sung RJ, Hwang R, Varner J (2005) Integrin [alpha]4[beta]1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 115:1542–1551

    Article  PubMed  CAS  Google Scholar 

  • Ghajar CM, Bissell MJ (2008) Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130:1105–1118

    Article  PubMed  CAS  Google Scholar 

  • Gosslar U, Jonas P, Luz A, Lifka A, Naor D, Hamann A, Holzmann B (1996) Predominant role of alpha 4-integrins for distinct steps of lymphoma metastasis. Proc Natl Acad Sci U S A 93:4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Grabovsky V, Feigelson S, Chen C, Bleijs DA, Peled A, Cinamon G, Baleux F, Arenzana-Seisdedos F, Lapidot T, van Kooyk Y, Lobb RR, Alon R (2000) Subsecond induction of [alpha]4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J Exp Med 192:495–506

    Article  PubMed  CAS  Google Scholar 

  • Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ, Cheresh DA (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin [alpha]v[beta]3. Clin Cancer Res 6:3056–3061

    PubMed  CAS  Google Scholar 

  • Hersey P, Sosman J, O’Day S, Richards J, Bedikian A, Gonzalez R, Sharfman W, Weber R, Logan T, Kirkwood JM (2005) A phase II, randomized, open-label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human [alpha]v[beta]3 ([alpha]v[beta]3) integrin, [plusmn] dacarbazine (DTIC) in patients with metastatic melanoma. J Clin Oncol 2005 ASCO Annu Meeting Proc 23:7507

    Google Scholar 

  • Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Huang XZ, Wu JF, Ferrando R, Lee JH, Wang YL, Farese RV Jr, Sheppard D (2000) Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 20:5208–5215

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  • Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin [alpha]5[beta]1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    Article  PubMed  CAS  Google Scholar 

  • Kuwada SK (2007) Drug evaluation: volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr Opin Mol Ther 9:92–98

    PubMed  CAS  Google Scholar 

  • Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L (2002) The EIIIA segment of fibronectin is a ligand for integrins [alpha]9[beta]1 and [alpha]4[beta]1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 277:14467–14474

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67:5064–5066

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Takagi J, Springer TA (2001) Association of the membrane proximal regions of the [alpha] and [beta] subunit cytoplasmic domains constrains an integrin in the inactive state. J Biol Chem 276:14642–14648

    Article  PubMed  CAS  Google Scholar 

  • Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507

    Article  PubMed  CAS  Google Scholar 

  • Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K (1997) Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139:295–307

    Article  PubMed  CAS  Google Scholar 

  • Marastoni S, Ligresti G, Lorenzon E, Colombatti A, Mongiat M (2008) Extracellular matrix: a matter of life and death. Connect Tissue Res 49:203–206

    Article  PubMed  CAS  Google Scholar 

  • Matsuura N, Puzon-McLaughlin W, Irie A, Morikawa Y, Kakudo K, Takada Y (1996) Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells. Am J Pathol 148:55–61

    PubMed  CAS  Google Scholar 

  • McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J, Zhang J, Hammershaimb L, Zwiebel JA, Wilding G (2005) Phase I trial of a monoclonal antibody specific for [alpha]v[beta]3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860

    Article  PubMed  CAS  Google Scholar 

  • Mercurio AM (2002) Lessons from the alpha2 integrin knockout mouse. Am J Pathol 161:3–6

    Article  PubMed  CAS  Google Scholar 

  • Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, Noonan DM, Natali PG, Albini A (2000) The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 87:336–42

    Article  PubMed  CAS  Google Scholar 

  • Mosher DF (1984) Physiology of fibronectin. Annu Rev Med 35:561–575

    Article  PubMed  CAS  Google Scholar 

  • Muether PS, Dell S, Kociok N, Zahn G, Stragies R, Vossmeyer D, Joussen AM (2007) The role of integrin [alpha]5[beta]1 in the regulation of corneal neovascularization. Exp Eye Res 85:356–365

    Article  PubMed  CAS  Google Scholar 

  • Muro AF, Moretti FA, Moore BB, Yan M, Atrasz RG, Wilke CA, Flaherty KR, Martinez FJ, Tsui JL, Sheppard D, Baralle FE, Toews GB, White ES (2008) An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am J Respir Crit Care Med 177:638–645

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Hawley RG, Kodaka M, Okuno H (1999) Significance of VLA-4-VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin Exp Metastasis 17:623–629

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Liu X, Liu E, Xu K, Niu W, Chen R, Wang J, Zhang Z, Lin P, Wang J, Agrez M, Niu J (2009) Norcantharidin induces HT-29 colon cancer cell apoptosis through the alphavbeta6-extracellular signal-related kinase signaling pathway. Cancer Sci 100(12):2302–2308

    Google Scholar 

  • Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK, Boucher Y (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods 6:143–145

    Article  PubMed  CAS  Google Scholar 

  • Pytela R, Pierschbacher MD, Ruoslahti E (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198

    Article  PubMed  CAS  Google Scholar 

  • Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, Dang D, Ellis D, Jordan R, Li X (2002) Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 21:297–307

    Article  PubMed  CAS  Google Scholar 

  • Ritzenthaler JD, Han S, Roman J (2008) Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. Mol Biosyst 4:1160–1169

    Article  PubMed  CAS  Google Scholar 

  • Robertson JH, Yang SY, Winslet MC, Seifalian AM (2009) Functional blocking of specific integrins inhibit colonic cancer migration. Clin Exp Metastasis (in press)

    Google Scholar 

  • Roma AA, Magi-Galluzzi C, Kral MA, Jin TT, Klein EA, Zhou M (2006) Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Mod Pathol 19:392–398

    Article  PubMed  Google Scholar 

  • Schmid MC, Varner JA (2007) Myeloid cell trafficking and tumor angiogenesis. Cancer Lett 250:1–8

    Article  PubMed  CAS  Google Scholar 

  • Schnapp LM, Hatch N, Ramos DM, Klimanskaya IV, Sheppard D, Pytela R (1995) The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 270:23196–23202

    Article  PubMed  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106:10290–10295

    Article  PubMed  CAS  Google Scholar 

  • Shoulders MD, Raines RT et al (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  Google Scholar 

  • Staniszewska I, Zaveri S, Del Valle L, Oliva I, Rothman VL, Croul SE, Roberts DD, Mosher DF, Tuszynski GP, Marcinkiewicz C (2007) Interaction of [alpha]9[beta]1 integrin with thrombospondin-1 promotes angiogenesis. Circ Res 100:1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Stupack DG (2005) Integrins as a distinct subtype of dependence receptors. Cell Death Differ 12:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Takada Y, Wayner EA, Carter WG, Hemler ME (1988) Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem 37:385–393

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, Chen ZN (2008) Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. Cell Mol Life Sci 65:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Tanjore H, Zeisberg EM, Gerami-Naini B, Kalluri R (2007) [beta]1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev Dyn 237:75–82

    Article  Google Scholar 

  • Umeda N, Kachi S, Akiyama H, Zahn G, Vossmeyer D, Stragies R, Campochiaro PA (2006) Suppression and regression of choroidal neovascularization by systemic administration of an [alpha]5[beta]1 integrin antagonist. Mol Pharmacol 69:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rosli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin [alpha]IIb[beta]3 [ldquo]inside-out[rdquo] activation as regulated by its cytoplasmic face. Cell 110:587–597

    Article  PubMed  CAS  Google Scholar 

  • Vlahakis NE, Young BA, Atakilit A, Sheppard D (2005) The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin [alpha]9[beta]1. J Biol Chem 280:4544–4552

    Article  PubMed  CAS  Google Scholar 

  • Vlahakis NE, Young BA, Atakilit A, Sheppard D (2007) Integrin [alpha]9[beta]1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J Biol Chem 282:15187–15196

    Article  PubMed  CAS  Google Scholar 

  • Vogel BE, Tarone G, Giancotti FG, Gailit J, Ruoslahti E (1990) A novel fibronectin receptor with an unexpected subunit composition (alpha v beta 1). J Biol Chem 265:5934–5937

    PubMed  CAS  Google Scholar 

  • Weinacker A, Ferrando R, Elliott M, Hogg J, Balmes J, Sheppard D (1995) Distribution of integrins alpha v beta 6 and alpha 9 beta 1 and their known ligands, fibronectin and tenascin, in human airways. Am J Respir Cell Mol Biol 12:547–556

    PubMed  CAS  Google Scholar 

  • Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D, Park C (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67:659–664

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Varner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Avraamides, C.J., Varner, J.A. (2011). Integrin-Extracellular Matrix Interactions. In: Mueller, M., Fusenig, N. (eds) Tumor-Associated Fibroblasts and their Matrix. The Tumor Microenvironment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0659-0_18

Download citation

Publish with us

Policies and ethics