Skip to main content

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 39))

Abstract

Phenology modeling has a long history starting in 1735 with a publication by (1735). Reaumur suggested that differences between years and locations in the date of phenological events could be explained by differences in daily temperatures from an arbitrary date to the date of the phenological event considered. This is still the most important assumption in plant phenology modeling. The main advances in phenology modeling took place in the late 20th century (Table 1) for two main reasons: (i) the revolution in computer science, and (ii) concerns about global climate change. Global warming is expected to have major impacts on plant functions and fitness, as increasing temperatures will change the timing of phenological events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Andersen, T. B., A model to predict the beginning of the pollen season, Grana, 30, 269–275, 1991.

    Article  Google Scholar 

  • Anderson, J. L., C. D. Kesner, and E. A. Richardson, Validation of chill unit and flower bud phenology models for Montmorency sour cherry, Acta Hort, 184, 71–77, 1986.

    Google Scholar 

  • Ashcroft, G. L., E. A. Richardson, and S. D. Seeley, A statistical method of determining chill unit and growing degree hour requirements for deciduous fruit trees, Hort Sci., 12, 347–348, 1977.

    Google Scholar 

  • Bach, W., Development of climatic scenarios from general circulation models, in The impact of climatic variations on agriculture, Vol. 1: Assessment on Cool Temperate and Cold Regions, edited by Parry, M. L., T. R. Carter and N. T. Konijn, pp. 125–157, Kluwer Academic Publishers, Dordrecht, 1987.

    Google Scholar 

  • Boyer, W. D., Air temperature, heat sums, and pollen shedding phenology of longleaf pine, Ecology, 54, 421–425, 1973.

    Article  Google Scholar 

  • Campbell, R. K., and A. I. Sugano, Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling and flushing temperature, Bot. Gaz., 136, 290–298, 1975.

    Article  Google Scholar 

  • Cannell, M. G. R., Chilling, thermal time and the dates of flowering of trees, in Manipulation of fruiting, edited by C. J. Wright, pp. 99–113, Butterworth and Co, London, 1989.

    Google Scholar 

  • Cannell, M. G. R., M. B. Murray, and L. J. Sheppard, Frost avoidance by selection for late budburst in Picea sitchensis, J. Appl. Ecol., 22, 931–941, 1985.

    Article  Google Scholar 

  • Cannell, M. G. R., and R. I. Smith, Thermal time, chill days and prediction of budburst in Picea sitchensis, J. Appl. Ecol., 20, 951–963, 1983.

    Article  Google Scholar 

  • Cannell, M. G. R., and R. I. Smith, Climatic warming, spring budburst and frost damage on trees, J. Appl. Ecol., 23, 177–191, 1986.

    Article  Google Scholar 

  • Chatfield, C., Problem solving: a statistician guide, Chapman and Hall, London, 261 pp., 1988.

    Google Scholar 

  • Chuine, I., A unified model for the budburst of trees, J. Theor. Biol., 207, 337–347, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chuine, I., and E. Beaubien, Phenology is a major determinant of temperate tree distributions, Ecol. Letters, 4, 500–510, 2001.

    Article  Google Scholar 

  • Chuine, I., P. Cour, and D. D. Rousseau, Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing, Plant, Cell and Env., 21, 455–466, 1998.

    Article  Google Scholar 

  • Chuine, I., P. Cour, and D. D. Rousseau, Selecting models to predict the timing of flowering of temperate trees: implication for tree phenology modelling, Plant, Cell and Env., 22, 1–13, 1999.

    Article  Google Scholar 

  • Ellis, R. H., E. H. Roberts, and R. J. Summerfield, Variation in the optimum temperature for rates of seedling emergence and progress towards flowering among six genotypes of faba bean (Vicia faba), Ann. Bot., 62, 119–126, 1988.

    Google Scholar 

  • Emberlin, J., J. Mullins, J. Corden, W. Millington, M. Brooke, M. Savage, and S. Jones, The trend to earlier Birch pollen season in the U. K.: a biotic response to changes in weather conditions?, Grana, 36, 29–33, 1997.

    Article  Google Scholar 

  • Falusi, M., and R. Calamassi, Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica L), Ann. Sci. For., 53, 967–979, 1996.

    Article  Google Scholar 

  • Frenguelli, G., and E. Bricchi, The use of pheno-climatic model for forecasting the pollination of some arboreal taxa, Aerobiologia, 14, 39–44, 1998.

    Article  Google Scholar 

  • Frenguelli, G., E. Bricchi, B. Romano, M. F. Ferranti, and E. Antognozzi, The role of air temperature in determining dormancy release and flowering of Corylus avellana L., Aerobiologia, 8, 415–418, 1992.

    Article  Google Scholar 

  • Frenguelli, G., E. Bricchi, B. Romano, G. Mincigriucci, and F. T. M. Spieksma, A predictive study on the beginning of pollen season for Gramineae and Olea europaea L., Aerobiologia, 5, 64–70, 1989.

    Article  Google Scholar 

  • Frenguelli, G., T. M. Spieksma, E. Bricchi, B. Romano, G. Mincigrucci, A. H. Nikkels, W. Dankaart, and F. Ferranti, The influence of air temperature on the starting dates of the pollen season of Alnus and Poplulus, Grana, 30, 196–200, 1991.

    Article  Google Scholar 

  • Häkkinen, R., Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves, Tree Physiol., 19, 613–618, 1999.

    PubMed  Google Scholar 

  • Häkkinen, R., T. Linkosalo, and P. Hari, Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896-1955., Tree Physiol., 15, 721–736, 1995.

    PubMed  Google Scholar 

  • Häkkinen, R., T. Linkosalo, and P. Hari, Effects of dormancy and environmental factors on timing of bud burst in Betula pendula, Tree Physiol., 18, 707–712, 1998.

    Google Scholar 

  • Hänninen, H., Effects of temperature on dormancy release in woody plants: implications of prevailing models., Silva Fenn., 21, 279–299, 1987.

    Google Scholar 

  • Hänninen, H., Modeling dormancy release in trees from cool and temperate regions, in Process modeling of forest growth responses to environmental stress, edited by R. K. Dixon, R. S. Meldahl, G. A. Ruark and W. G. Warren, pp. 159–165, Timber Press, Portland, 1990a.

    Google Scholar 

  • Hänninen, H., Modelling bud dormancy release in trees from cool and temperate regions., Acta Forest. Fenn., 213, 1–47, 1990b.

    Google Scholar 

  • Hänninen, H., Does climatic warming increase the risk of frost damage in northern trees?, Plant, Cell and Env., 14, 449–454, 1991.

    Article  Google Scholar 

  • Hänninen, H., Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of budburst phenology, Can. J. Bot., 73, 183–199, 1995.

    Article  Google Scholar 

  • Hänninen, H., and P. Hari, The implications of geographical variation in climate for differentiation of bud dormancy ecotypes in Scots pine, Acta Forest. Fenn., 254, 11–21, 1996.

    Google Scholar 

  • Hänninen, H., S. Kellomäki, K. Laitinen, B. Pajari and, T. Repo, Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model, Silva Fenn., 27, 251–257, 1993.

    Google Scholar 

  • Heide, O. M., Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days, Physio. Plant., 89, 187–191, 1993.

    Article  Google Scholar 

  • Hunter, A. F., and M. J. Lechowicz, Predicting the timing of budburst in temperate trees, J. of Appl. Ecol., 29, 597–604, 1992.

    Article  Google Scholar 

  • Kellomäki, S., H. Hänninen, and M. Kolström, Computations on frost damage to Scots pine under climatic warming in boreal conditions, Ecol. Appl., 5, 42–52, 1995.

    Article  Google Scholar 

  • Kikuzawa, K., A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern., Am. Nat., 138, 1250–1263, 1991.

    Article  Google Scholar 

  • Kikuzawa, K., The basis for variation in leaf longevity of plants, Vegetatio, 121, 89–100, 1995a.

    Article  Google Scholar 

  • Kikuzawa, K., Leaf phenology as an optimal strategy for carbon gain in plants, Can. J. Bot. 73, 158–163, 1995b.

    Article  Google Scholar 

  • Kikuzawa, K., Geographical distribution of leaf life span and species diversity of trees simulated by a leaf-longevity model., Vegetatio, 122, 61–67, 1996.

    Article  Google Scholar 

  • Kikuzawa, K., and G. Kudo, Effects of the length of the snow-free period on leaf longevity in alpine shrubs: a cost-benefit model, Oikos, 73, 214–220, 1995.

    Article  Google Scholar 

  • Kobayashi, K. D., and L. H. Fuchigami, Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.), Agr. Meteo., 28, 75–84, 1983a.

    Article  Google Scholar 

  • Kobayashi, K. D., and L. H. Fuchigami, Modelling temperature effects in breaking rest in Red-osier Dogwood (Cornus sericea L.), Ann. Bot., 52, 205–215, 1983b.

    Google Scholar 

  • Kobayashi, K. D., L. H. Fuchigami, and M. J. English, Modelling temperature requirements for rest development in Cornus sericea, J. Am. Soc. Hor. Sci., 107, 914–918, 1982.

    Google Scholar 

  • Kramer, K., A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany, Plant, Cell and Env., 17, 367–377, 1994a.

    Article  Google Scholar 

  • Kramer, K., Selecting a model to predict the onset of growth of Fagus sylvatica., J. Appl. Ecol., 31, 172–181, 1994b.

    Article  Google Scholar 

  • Kramer, K., Modelling comparison to evaluate the importance of phenology for the effects of climate change in growth of temperate-zone deciduous trees, Clim. Res., 5, 119–130, 1995a.

    Article  Google Scholar 

  • Kramer, K., Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming, Plant, Cell and Env., 18, 93–104, 1995b.

    Article  Google Scholar 

  • Kramer, K., A. D. Friend, and I. Leinonen, Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests, Clim. Res., 7, 31–41, 1996.

    Article  Google Scholar 

  • Kramer, K., I. Leinonen, and D. Loustau, The importance of phenology for the evaluation of impacts of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview, Int. J. Biometeorol., 44, 67–75, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, K., and G. M. J. Mohren, Sensitivity of FORGRO to climatic change scenarios: a case study on Betula pubescens, Fagus sylvatica and Quercus robur in the Netherlands, Clim. Change, 34, 231–237, 1996.

    Article  CAS  Google Scholar 

  • Kupias, R. and Y. Mäkinen, Correlations of Alder pollen occurrence to climatic variables, First international conference on aerobiology, Munich, 1980.

    Google Scholar 

  • Lamb, R. C., Effects of temperature above and below freezing on the breaking of rest in the Latham raspberry, J. Am. Soc. Hort. Sci., 51, 313–315, 1948.

    Google Scholar 

  • Landsberg, J. J., Apple fruit bud development and growth; analysis and an empirical model., Ann. Bot., 38, 1013–1023, 1974.

    Google Scholar 

  • Lechowicz, M. J., and T. Koike, Phenology and seasonality of woody plants: An unappreciated element in global change research., Can. J. Bot., 73, 147–148, 1995.

    Article  Google Scholar 

  • Leinonen, I., A simulation model for the annual frost hardiness and freeze damage of Scots Pine, Ann. Bot., 78, 687–693, 1996.

    Article  Google Scholar 

  • Leinonen, I., and K. Kramer, Applications of phenological models to predict the future carbon sequestration potential of Boreal forests, Clim. Change, 55, 99–113, 2002.

    Article  CAS  Google Scholar 

  • Leinonen, I., T. Repo, H. Hänninen, and K. Burr, A second-order dynamics model for the frost hardiness of trees., Ann. Bot., 76, 89–95, 1995.

    Article  Google Scholar 

  • Lescourret, F., N. Blecher, R. Habib, J. Chadboeuf, D. Agostini, O. Paliiy, B. Vaissière, and I. Poggi, Development of a simulation model for studying kiwi fruit orchard management, Agr. Syst., 59, 215–239, 1999.

    Article  Google Scholar 

  • Lieth, H., Phenology in productivity studies, in Analysis of temperate forest ecosystems, 1, edited by D. E. Reichle, pp. 29–55, Springer Verlag, Heidelberg, 1970.

    Google Scholar 

  • Lieth, H., The phenological viewpoint in productivity studies, in Productivity of forest ecosystems. Proceedings of the Brussels Symposium by UNESCO., edited by P. Duvigneaud, pp 71–83, UNESCO, Paris, 1971.

    Google Scholar 

  • Linkosalo, T., Regularities and patterns in the spring phenology of some boreal trees, Silva Fenn., 33, 237–245, 1999.

    Google Scholar 

  • Linkosalo, T., T. Carter, R. Häkkinen, and P. Hari, Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models, Tree Physiol., 20, 1175–1182, 2000.

    PubMed  Google Scholar 

  • Linkosalo, T., R. Häkkinen, and P. Hari, Improving the reliability of a combined phenological times series by analyzing observation quality, Tree Physiol., 16, 661–664, 1996.

    PubMed  Google Scholar 

  • Marletto, V., G. P. Branzi, and M. Sirotti, Forecasting flowering dates of lawn species with air temperature: application boundaries of the linear approach, Aerobiologia, 8, 75–83, 1992.

    Article  Google Scholar 

  • Menzel, A, and P. Fabian, Growing season extended in Europe, Nature, 397, 659, 1999.

    Article  CAS  Google Scholar 

  • Mohren, G. M. J., Simulation of forest growth, applied to Douglas fir stands in the Netherlands, Wageningen Agricultural University, Wageningen, The Netherlands, 184 pp., 1987.

    Google Scholar 

  • Mohren, G. M. J., H. H. Bartelink, K. Kramer, F. Magnani, S. Sabaté and D. Loustau, Modelling long-term effects of CO2 increase and climate change on European forests, with emphasis on ecosystem carbon budgets, in Forest ecosystem modelling, upscaling and remote sensing, edited by R. J. M. Ceulemans, F. Veroustreate, V. Gond, and J. B. H. F. V. Rensbergen, pp. 179–192, SPB Academic Publishing, The Hague, 1999.

    Google Scholar 

  • Murray, M. B., G. R. Cannell, and R. I. Smith, Date of budburst of fifteen tree species in Britain following climatic warming., J. Appl. Ecol., 26, 693–700, 1989.

    Article  Google Scholar 

  • Murray, M. B., R. I. Smith, I. D. Leith, D. Fowler, H. S. Lee, A. D. Friend, and P. G. Jarvis, Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage, Tree Physiol., 14, 691–706, 1994.

    PubMed  Google Scholar 

  • Nizinski, J. J., and B. Saugier, A model of leaf budding and development for a mature Quercus forest., J. Appl. Ecol., 25, 643–652, 1988.

    Article  Google Scholar 

  • Oliveira, M., Calculation of budbreak and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro region of Portugal, Am. J. Enol. Vitic., 49, 74–78, 1998.

    Google Scholar 

  • Osborne, C. P., I. Chuine, D. Viner, and F. I. Woodward, Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean, Plant, Cell and Env., 23, 701–710, 2000.

    Article  Google Scholar 

  • Phillipp, M., J. Böcher, O. Mattson, and S. L. J. Woodell, A quantitative approach to the sexual reproductive biology and population structure in some Arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis, Medd Grönl Biosciences, 34, 1–60, 1990.

    Google Scholar 

  • Pigott, C. D., and J. P. Huntley, Factors controlling the distribution of Tilia cordata at the Northern limits of its geographical range. III Nature and cause of seed sterility, New Phytol., 87, 817–839, 1981.

    Article  Google Scholar 

  • Pipper, E. L., K. L. Boote, J. W. Jones, and S. S. Grimm, Comparison of two phenology models for predicting flowering and maturity date of soybean, Crop Sci., 36, 1606–1614, 1996.

    Article  Google Scholar 

  • Pouget, R., Recherches physiologiques sur le repos végétatifs de la vigne (Vitis vinifera L;): la dormance des bourgeons et le mécanisme de sa disparition, INRA, Paris, 1963.

    Google Scholar 

  • Pouget, R., Etude du rythme végétatif: caractères physiologiques liés à la précocité de débourrement chez la vigne, Annales de l’amélioration des plantes, 16, 6–100, 1966.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in Pascal, Cambridge University Press, Cambridge, 759 pp., 1989.

    Google Scholar 

  • Reaumur, R. A. F. de, Observations du thermomètre, faites à Paris pendant l*#x2019;année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l*#x2019;Amérique., Memoires de l’Académie des Sciences de Paris, 1735.

    Google Scholar 

  • Reich, P. B., Phenology of tropical forests: patterns, causes, and consequences, Can. J. Bot. 73, 164–174, 1994.

    Article  Google Scholar 

  • Repo, T., A. Mäkelä, and H. Hänninen, Modelling frost resistance of trees, Silva Carelica, 15, 61–74, 1990.

    Google Scholar 

  • Richardson, E. A., S. D. Seeley, and D. R. Walker, A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees, Hort. Science, 9, 331–332, 1974.

    Google Scholar 

  • Roberts, E. H., R. J. Summerfiled, R. H. Ellis, and K. A. Stewart, Photothermal time for flowering in lentils (Lens culinaris) and the analysis of potential vernalization responses, Ann. Bot., 61, 23–39, 1988.

    Google Scholar 

  • Robertson, G. W., A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod, Int. J. Biometeorol., 12, 191–223, 1968.

    Article  Google Scholar 

  • Sarvas, R., Investigations on the annual cycle of development on forest trees active period, Communicationes Instituti Forestalis Fenniae, 76, 110, 1972.

    Google Scholar 

  • Sarvas, R., Investigations on the annual cycle of development of forest trees: Autumn dormancy and winter dormancy, Communicationes Instituti Forestalis Fenniae, 84, 1–101, 1974.

    Google Scholar 

  • Schwartz, M. D., Spring index models: an approach to connecting satellite and surface phenology, in Phenology in seasonal climates I, edited by H. Lieth and M. D. Schwartz, pp. 23–38, Backhuys Publishers, Leiden, 1997.

    Google Scholar 

  • Schwartz, M. D., Green-wave phenology, Nature, 394, 839–840, 1998.

    Article  CAS  Google Scholar 

  • Schwartz, M. D., Advancing to full bloom: planning phenological research for the 21st century, Int. J. Biometeorol., 42, 113–118, 1999.

    Article  Google Scholar 

  • Schwartz, M. D., and G. A. Marotz, An approach to examining regional atmosphere-plant interactions with phenological data, J. Biogeograph., 13, 551–560, 1986.

    Article  Google Scholar 

  • Schwartz, M. D., and G. A. Marotz, Synoptic events and spring phenology, Phys. Geog., 9, 151–161, 1988.

    Google Scholar 

  • Sinclair, T. R., S. Kitani, J. Bruniard and T. Horide, Soybean flowering date: linear and logistic models based on temperature and photoperiod, Crop Sci., 31, 786–790, 1991.

    Article  Google Scholar 

  • Spieksma, F. T. H., J. Emberlin, M. Hjelmroos, S. Jäger, and R.M. Leuschner, Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons, Grana, 34, 51–57, 1995.

    Article  Google Scholar 

  • Swartz, H. J., and L.E. Powell, The effect of long chilling requirement on time of bud break in apple, Acta Horticulturae, 120, 173–177, 1981.

    Google Scholar 

  • Thorhallsdottir, T. E., Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic, Oecologia, 114, 43–49, 1998.

    Article  Google Scholar 

  • Vegis, A., Dormancy in higher plants, Annual review of plant physiology, 15, 185–224, 1964.

    Article  CAS  Google Scholar 

  • Vesala, T., J. Haataja, P. Aalto, N. Altimir, G. Buzorius, E. Garam, K. Hämeri, H. Ilvesniemi, V. Jokinen, P. Keronen, T. Lahti, T. Markkanen, J.M. Mäkelä, E. Nikinmaa, S. Palmroth, L. Palva, T. Pohja, J. Pumpanen, Ãœ. Rannik, E. Siivola, H. Ylitalo, P. Hari, and M. Kulmala, Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry, Trends in Heat, Mass and Momentum Transfer, 4, 17–35, 1998.

    CAS  Google Scholar 

  • Winter, F., A simulation model of phenology and corresponding frost resistance in ‘Golden delicious’ apple, Acta Horticulturae, 184, 103–107, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chuine, I., Kramer, K., Hänninen, H. (2003). Plant Development Models. In: Schwartz, M.D. (eds) Phenology: An Integrative Environmental Science. Tasks for Vegetation Science, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0632-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0632-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1580-9

  • Online ISBN: 978-94-007-0632-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics