Skip to main content

Leak Detection: General Remarks and Examples

  • Conference paper
  • First Online:
Integrity of Pipelines Transporting Hydrocarbons

Part of the book series: NATO Science for Peace and Security Series C: Environmental Security ((NAPSC,volume 1))

  • 1337 Accesses

Abstract

Structure defects may be detected by all the non-destructive analysis techniques from radiography, magnetic particles, liquid penetrating, to ultrasounds, to eddy currents, etc. Nevertheless, to evaluate the quantity of liquid or gas that may be lost in the surrounding ambient specific techniques related to leak detection should be considered. Frequently the maximum acceptable leaks must be evaluated to select the method suitable for the specified object and, finally, to compare the solutions on the basis of costs-benefit relationship. Various leak detection methods and related instrumentation are available (bubbles, ultrasound emission, radar, pressure/vacuum variation, thermal conductivity, halogens, radioisotopes, selective ion pumping, mass spectrometry). Before starting any type of leak testing, it is necessary to decide whether leaks have to be located or measured. Checking the tightness of an object or device implies the measurement of gas flow coming out from a defect or entering through it and reference devices should be provided by primary or accredited laboratories. After a short review of methods/instrumentation attention is given to the calibration of any kind of systems and methods to guarantee the validity of the whole test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Introduction to Helium Mass Spectrometer Leak Detection, Varian Associates Inc., Palo Alto, 1080

    Google Scholar 

  2. J.M. Lafferty (ed.), Foundations of Vacuum Science and Technology (Wiley, New York, 1997)

    Google Scholar 

  3. E.H. Kennard, Kinetic Theory of Gases (MacGraw-Hill, New York, 1938)

    Google Scholar 

  4. Leak testing of large containers, American Gas and Chemical Co. Ltd, Large.containers.mht

    Google Scholar 

  5. C. Moon, W.C. Brown, S. Mellen, E. Erenz, D.J. Pickering, Ultrasound techniques for leak detection, 2009-01-2159, SAE international, New York

    Google Scholar 

  6. Ultrasound leak detection, www.gasonic.com

  7. S.D. Holland, R. Roberts, D.E. Chimenti, M. Shei, Leak detection in spacecraft using structure-born noise distributed sensors. Appl. Phys. Lett. 86, 154105 (2005) (April 2005)

    Article  Google Scholar 

  8. B. Reqiri, W. Scholl, S.P. Robinson, Measurement and testing of the acoustic properties of materials: review. Metrologia 47, S156–S171 (2010)

    Article  Google Scholar 

  9. W. Hertz, Advances of laser-acoustical leak testing for construction and operation of low temperature installations and superconducting experiments. J. Vac. Sci. Technol. A20(5), 1733–1737 (2002) (Sep/Oct 2002)

    Google Scholar 

  10. F. Foddis, F. Pedrielli, Sistema di rilevamento perdite in oleodotti, Manutenzione, Tecnica e management. 25–28 Sept 2003

    Google Scholar 

  11. N. Gopalsami, D.B. Kanareykin, V.D. Asanov, S. Bakthiari, A.C. Raptis, Microwave radar detection of gas pipeline leaks. Paper presented at the 29th Annual Review of Progress in Quantitative Nondestructive Evaluation, Bellingham, 14–19 July 2001

    Google Scholar 

  12. N. Gopalsami, A. Dron, T. Elmer, P. Raptis, A radar detection and monitoring gas pipelines leaks, in Natural Gas Infrastructure Reliability Industry Forum, Morgantown, 16–17 Sept 2002

    Google Scholar 

  13. N. Gopalsami, D.B. Kanareykin, V.D. Asanov, S Bakthiari, A.C. Raptis, Microwave radar detection of gas pipeline leaks, AIP Conf. Proc. 57, 478–484 (27 March 2003)

    Google Scholar 

  14. N. Gopalsami, A. Dron, T. Elmer, A.C. Raptis, V.D. Asomov, S.V. Kakhatski, S.A. Nishim, The use of microwave radar for remote detection of gas pipeline leaks, www.netl.doc.gov

  15. J. Robotz, Introduction to Mass Spectrometry (Interscience, New York, 1968)

    Google Scholar 

  16. A. Psacaropulo, Applicazionidi prove di tenuta in oggetti sotterranei, dai cavi telefonici ai serbatoi per liquidi Aipnd Annual Meeting, Milan, Sept 2007

    Google Scholar 

  17. B. Brunone, M. Ferrante, Detecting leaks in pressurized pipes by means of transients. J. Hydraul. Res., IAHR 39, 539–547 (2001)

    Article  Google Scholar 

  18. N. Ferrante, B. Brunone, Pipe system diagnosis and leak detection by un steady-state tests, 2. Wavelet analysis. Adv. Water Resour. 23(5–7), 627–632 (1993)

    Google Scholar 

  19. W.G. Bley, Helium leak units. Vacuum 44(5–7), 627–632 (1993)

    Article  Google Scholar 

  20. G. Reich, Leak detection with tracer gases, sensitivity and relevant limiting factors. Vacuum 37(8–9), 691–698 (1987)

    Article  CAS  Google Scholar 

  21. L.J. Berquist, Y.T. Sasaki, Innovation in helium leak detector systems. J. Vac. Sci. Technol A10(4), 2650–2654 (1992) (July/Aug 1992)

    Google Scholar 

  22. A. Calcatelli, M. Bergoglio, D. Mari, Leak detection, calibrations and reference flows: practical examples. Vacuum 81(11–12), 1538–1544 (2007) (Aug 2007)

    Article  CAS  Google Scholar 

  23. Complete CMCs in Mass and related quantities for Italy (pdf file) on http://www.bipm.org/exalead_kcdb/exa_kcdb.jsp?_c=+16366751034942705708/_c=+18132149409823012435

  24. A. Calcatelli, G. Molinar, Primary pressure scale in Italy from 10-6 Pa to 109 Pa, in Basic Metrology, Libreria Editrice Universitaria, Levrotto e Bella, Torino, 1984

    Google Scholar 

  25. M. Bergoglio, A. Calcatelli, The physical measurement of pressure. Vacuum 64, 153–162 (2002)

    Article  Google Scholar 

  26. A. Calcatelli, G. Raiteri, G. Rumiano, Gas flow measurements connected with the continuous expansion system, in International Symposium on Pressure and Vacuum, ed. by Acta Metrologica Sinica Press, Beijing, 22–24 Sept 2003, pp. 29–35

    Google Scholar 

  27. A. Calcatelli, G. Raiteri, G. Rumiano, The IMGC-CNR flow meter for automatic measurements of low-range gas flows. Measurement 34(2), 121–132 (2003)

    Article  Google Scholar 

  28. C.D. Ehrlich, J.A. Basford, Recommended practices for calibration and use of leaks. J. Vac. Sci. Technol. A10(1), 1–17 (1992) (Jan/Feb 1992)

    Google Scholar 

  29. M. Bergoglio, A. Calcatelli, G. Rumiano, Gas flowrate measurements for leak calibration. Vacuum 46(8), 763–765 (1995)

    Google Scholar 

  30. M. Bergoglio, G. Brondimo, A. Calcatelli, G. Reiteri, G. Rumiano, Mathematical model applied to the experimental calibration results of a capillary standard leak. Flow Meas. Instrum. 17, 129–138 (2006)

    Article  Google Scholar 

  31. ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories, 2005

    Google Scholar 

  32. http://kcdb.bim.org/appenidxD, key comparisons

  33. ISO ISBN 92-67-101889, Guide to the expression of the uncertainty in measurements, 1993 (revised with minor corrections in 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Calcatelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Calcatelli, A. (2011). Leak Detection: General Remarks and Examples. In: Bolzon, G., Boukharouba, T., Gabetta, G., Elboujdaini, M., Mellas, M. (eds) Integrity of Pipelines Transporting Hydrocarbons. NATO Science for Peace and Security Series C: Environmental Security, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0588-3_13

Download citation

Publish with us

Policies and ethics