Skip to main content

An Evidence-based Perspective of Arsenic Trioxide (As2O3) for Cancer Patients

  • Chapter
  • First Online:
Evidence-based Anticancer Materia Medica

Abstract

The ancient drug, arsenic, has remarkable efficacy in the treatment of relapsed acute promyelocytic leukemia (APL) and it is highly likely that a regimen for treatment of APL that does not require any traditional chemotherapy drugs will be developed in the future. Arsenic trioxide (white arsenic or As2O3) was approved by the United States Food and Drug Administration for being used in the treatment of relapsed/refractory APL in 2000. This success has led to exploration of its use in other malignancies. As2O3 interacts with multiple molecular targets and signaling pathways. The resultant effect depends on factors, including cell type, and the dose and duration of As2O3 exposure. Understanding the molecular and biological basis of these effects will promote the rational and optimal application of As2O3 in diseases other than APL. A series of clinical trials with As2O3 has confirmed its benefit in the therapy of APL, although its role in the treatment of other malignancies remains to be determined. Careful attention to the clinical management of patients on As2O3 therapy can significantly lessen the risk of major side effects. The administration of As2O3 can be done safely if careful attention to electrolyte abnormalities and electrocardiographic monitoring is undertaken. Here we provide an overview of the mechanism of action of arsenic and summarize its development in the treatment of APL and other malignant disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Jawde, R. M., Reed, J., Kelly, M., et al. (2006). Efficacy and safety results with the combination therapy of arsenic trioxide, dexamethasone, and ascorbic acid in multiple myeloma patients: A phase 2 trial. Medical Oncology, 23, 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Andrew, B., Daniel, H., & Tim, M. (2004). Systemic treatment and liver transplantation for hepatocellular carcinoma: Two ends of the therapeutic spectrum. The Lancet Oncology, 5, 409–501.

    Article  Google Scholar 

  • Antman, K. H. (2001). Introduction: The history of arsenic trioxide in cancer therapy. The Oncologist, 6, 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Bael, T. E., Peterson, B. L., & Gollob, J. A. (2008). Phase II trial of arsenic trioxide and ascorbic acid with temozolomide in patients with metastatic melanoma with or without central nervous system metastases. Melanoma Research, 18, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Bahlis, N. J., McCafferty-Grad, J., Jordan-McMurry, I., et al. (2002). Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clinical Cancer Research, 8, 3658–3668.

    PubMed  CAS  Google Scholar 

  • Barbarotto, E., Schmittgen, T. D., & Calin, G. A. (2008). MicroRNAs and cancer: Profile, profile, profile. International Journal of Cancer. Journal international du cancer, 122, 969–977.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Berenson, J. R., Boccia, R., Siegel, D., et al. (2006). Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br J Haemato, 135, 174–183.

    Article  CAS  Google Scholar 

  • Berenson, J. R., Matous, J., Swift, R. A., et al. (2007). A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma. Clinical Cancer Research, 13, 1762–1768.

    Article  PubMed  CAS  Google Scholar 

  • Bernstam, L., & Nriagu, J. (2000). Molecular aspects of arsenic stress. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 3, 293–322.

    Article  PubMed  CAS  Google Scholar 

  • Bushati, N., & Cohen, S. M. (2007). microRNAs functions. Annual Review of Cell and Developmental Biology, 23, 175–205.

    Article  PubMed  CAS  Google Scholar 

  • Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P. C., & Huff, J. (1997). Arsenic carcinogenesis in animals and in humans: Mechanistic, experimental, and epidemiological evidence. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 15, 83–122.

    Article  Google Scholar 

  • Chang, J. E., Voorhees, P. M., Kolesar, J. M., et al. (2009). Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: A Wisconsin oncology network study. Hematological Oncology, 27, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G. Q., Zhu, J., Shi, X. G., et al. (1996). In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood, 88, 1052–1061

    PubMed  CAS  Google Scholar 

  • Chen, G. Q., Shi, X. G., Tang, W., et al. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): As2O3 exerts dose-dependent dual effects on APL cells. Blood, 89, 3345–3353.

    PubMed  CAS  Google Scholar 

  • Chen, X., Zhang, M., & Liu, L. X. (2009). The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncology Reports, 22, 73–80.

    Google Scholar 

  • Cho, W. C. (2010a). MicroRNAs in cancer—From research to therapy. Biochimica et biophysica acta, 1805, 209–217.

    CAS  Google Scholar 

  • Cho, W. C. (2010b). MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. The International Journal of Biochemistry & Cell Biology, 42, 1273–1281

    Article  CAS  Google Scholar 

  • Chun, Y. J., Park, I. C., Park, M. J., et al. (2002). Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3). FEBS Letters, 519, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, E. G., & Bradford, E. H. (1878). Action of iron, cod-liver oil, and arsenic on the globular richness of the blood. The American Journal of the Medical Sciences, 75, 74–84

    Article  Google Scholar 

  • Dai, J., Weinberg, R. S., Waxman, S., et al. (1999). Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood, 93, 268–277

    PubMed  CAS  Google Scholar 

  • Davison, K., Mann, K. K., & Miller, W. H., Jr. (2002). Arsenic trioxide: Mechanisms of action. Seminars in Hematology, 39, 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Deeley, R. G., Westlake, C., & Cole, S. P. (2006). Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiological Review, 86, 849–899.

    Article  CAS  Google Scholar 

  • Duesberg, P., Li, R., Sachs, R., Fabarius, A., et al. (2007). Cancer drug resistance: The central role of the karyotype. Drug Resistance Updates, 10, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, J. A., Maul, G. G., Miller, W. H., Jr., et al. (1994). A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell, 76, 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Ejendal, K. F., & Hrycyna, C. A. (2002). Multidrug resistance and cancer: The role of the human ABC transporter ABCG2. Current Protein & Peptide Science, 3, 503–511.

    Article  CAS  Google Scholar 

  • Emadi, A., & Gore, S. D. (2010). Arsenic trioxide—An old drug rediscovered. Blood Reviews, 24(4–5), 191–199.

    Article  Google Scholar 

  • Filippova, M., & Duerksen-Hughes, P. J. (2003). Inorganic and dimethylated arsenic species induce cellular p53. Chemical Research in Toxicology, 16, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Fojo, T. (2007). Multiple paths to a drug resistance phenotype: Mutations, translocations, deletions and amplification of coding genes or promoterregions, epigenetic changes and microRNAs. Drug Resistance Updates, 10, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Glasspool, R. M., Teodoridis, J. M., & Brown, R. (2006). Epigenetics as a mechanism driving polygenic clinical drug resistance. British Journal of Cancer, 94, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Grimwade, D., Mistry, A. R., Solomon, E., et al. (2009). Acute promyelocytic leukemia: A paradigm for differentiation therapy. Cancer Treatment and Research, 145, 219–235.

    Article  Google Scholar 

  • Gu, J., Zhu, X., Li, Y., et al. (2011). MiRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Medical Oncology, 28, 211–218.

    Google Scholar 

  • Haller, J. S. (1975). Therapeutic mule: The use of arsenic in the nineteenth century material medica. Pharmacy in History, 17, 87–100.

    PubMed  CAS  Google Scholar 

  • Han, Y. H., Kim, S. Z., Kim, S. H., et al. (2008). Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine. Molecules and Cells, 26, 158–164.

    PubMed  CAS  Google Scholar 

  • Higashitsuji, H., Higashitsuji, H., Itoh, K., et al. (2005). The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell, 8, 75–87.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., Liu, Y. F., Wu, C. F., et al. (2009). Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 106, 3342–3347.

    Google Scholar 

  • Huilgol, N. G. (2006). A phase I study to study arsenic trioxide with radiation and hyperthermia in advanced head and neck cancer. Int J Hyperthermia, 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Hussein, M. A., Saleh, M., Ravandi, F., et al. (2004). Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. British Journal of Haematology, 125, 470–476.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Bernardi, R., Morotti, A., et al. (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 453, 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa, Y., Nowak, M. A., & Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics, 172, 2557–2566.

    Article  PubMed  Google Scholar 

  • Jackson, R., & Grainge, J. W. (1975). Arsenic and cancer. Canadian Medical Association Journal, 113, 396–401.

    PubMed  CAS  Google Scholar 

  • Jiang, X. H., Wong, B. C., Yuen, S. T., et al. (2001). Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. International Journal of Cancer. Journal international du cancer, 91, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Jing, Y., Wang, L., Xia, L., et al. (2001). Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood, 97, 264–269.

    Article  PubMed  CAS  Google Scholar 

  • Jutooru, I., Chadalapaka, G., Sreevalsan, S., et al. (2010). Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Experimental Cell Research, 316, 2174–2188.

    Article  PubMed  CAS  Google Scholar 

  • Kala, S. V., Neely, M. W., Kala, G., et al. (2000). The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. The Journal of Biological Chemistry, 275, 33404–33408.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y. H., & Lee, S. J. (2008). Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation. Oncology Reports, 20, 637–643.

    Google Scholar 

  • Kapahi, P., Takahashi, T., Natoli, G., et al. (2000). Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. The Journal of Biological Chemistry, 275, 36062–36066.

    Article  PubMed  CAS  Google Scholar 

  • Kchour, G., Tarhini, M., Kooshyar, M. M., et al. (2009). Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood, 113, 6528–6532.

    Article  PubMed  CAS  Google Scholar 

  • Keppler, D., Leier, I., Jedlitschky, G., et al. (1998). ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chemico-Biological Interactions, 111–112, 153–161.

    Google Scholar 

  • Kim, K. B., Bedikian, A. Y., Camacho, L. H., et al. (2005). A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer, 104, 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  • Kindler, H. L., Aklilu, M., Nattam, S., et al. (2008). Arsenic trioxide in patients with adenocarcinoma of the pancreas refractory to gemcitabine: A phase II trial of the University of Chicago phase II consortium. American Journal of Clinical Oncology, 31, 553–556.

    Article  CAS  Google Scholar 

  • Kwong, Y. L., & Todd, D. (1997). Delicious poison: Arsenic trioxide for the treatment of leukemia. Blood, 89, 3487–3488.

    PubMed  CAS  Google Scholar 

  • Lee, P. C., Kakadiya, R., Su, T. L., et al. (2010). Combination of bifunctional alkylating agent and arsenic trioxide synergistically suppresses the growth of drug-resistant tumor cells. Neoplasia, 12, 376–387.

    PubMed  CAS  Google Scholar 

  • Lehnert, M. (1998). Chemotherapy resistance in breast cancer. Anticancer Research, 18, 2225–2226.

    PubMed  CAS  Google Scholar 

  • Li, Y., Zhu, X., Gu, J., et al. (2010). Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Science, 101, 948–954.

    Article  PubMed  CAS  Google Scholar 

  • Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. C., Hsu, C., Hsu, C. H., et al. (2007). Arsenic trioxide in patients with hepatocellular carcinoma: A phase II trial. Investigational New Drugs, 25, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • List, A., Beran, M., DiPersio, J., et al. (2003). Opportunities for Trisenox® (Arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia, 17, 1499–1507.

    Article  PubMed  CAS  Google Scholar 

  • Lu, M., Levin, J., Sulpice, E., et al. (1999). Effect of arsenic trioxide on viability, proliferation, and apoptosis in human megakaryocytic leukemia cell lines. Experimental Hematology, 27, 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Getz, G., Miska, E. A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.

    Article  PubMed  CAS  Google Scholar 

  • Mahieux, R., & Hermine, O. (2005). In vivo and in vitro treatment of HTLV-1 and HTLV-2 infected cells with arsenic trioxide and interferon-alpha. Leukemia & Lymphoma, 46, 347–355.

    Article  CAS  Google Scholar 

  • Mantadakis, E., Samonis, G., & Kalmanti, M. (2008). A comprehensive review of acute promyelocytic leukemia in children. Acta Haematologica, 119, 73–82.

    Article  PubMed  Google Scholar 

  • Meng, X. Z., Zheng, T. S., Chen, X., et al. (2010). MicroRNA expression alteration after arsenic trioxide treatment in HepG-2 cells. Journal of Gastroenterology and Hepatology, in press.

    Google Scholar 

  • Miller, W. H., Jr., Schipper, H. M., Lee, J. S., et al. (2002). Mechanisms of action of arsenic trioxide. Cancer Research, 62, 3893–3903.

    PubMed  CAS  Google Scholar 

  • Munshi, N. C. (2001). Arsenic trioxide: An emerging therapy for multiple myeloma. The Oncologist, 6, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Munshi, N. C., Tricot, G., Desikan, R., et al. (2002). Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia, 16, 1835–1837.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, M. (2008). Reactive oxygen species in tumor metastasis. Cancer Letters, 266, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Novick, S. C., & Warrell, R. P., Jr. (2000). Arsenicals in hematologic cancers. Seminars in Oncology, 27, 495–501.

    PubMed  CAS  Google Scholar 

  • Park, J. W., Choi, Y. J., Jang, M. A., et al. (2001). Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochemical and Biophysical Research Communications, 286, 726–734.

    Article  PubMed  CAS  Google Scholar 

  • Parmar, S., Rundhaugen, L. M., Boehlke, L., et al. (2004). Phase II trial of arsenic trioxide in relapsed and refractory acute myeloid leukemia, secondary leukemia and/or newly diagnosed patients at least 65 years old. Leukemia Research, 28, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, C., Kim, C. N., Fang, G., et al. (2000). Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-xL. Blood, 95, 1014–1022.

    PubMed  CAS  Google Scholar 

  • Ravandi, F., Estey, E., Jones, D., et al. (2009). Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. Journal of Clinical Oncology, 27, 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Roberti, A., La Sala, D., & Cinti, C. (2006). Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: Current views and new therapeutic prospective. Journal of Cell Physiology, 207, 571–581.

    Article  CAS  Google Scholar 

  • Roboz, G. J., Dias, S., Lam, G., et al. (2000). Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood, 96, 1525–1530.

    PubMed  CAS  Google Scholar 

  • Roboz, G. J., Ritchie, E. K., Curcio, T., et al. (2008). Arsenic trioxide and low-dose cytarabine in older patients with untreated acute myeloid leukemia, excluding acute promyelocytic leukemia. Cancer, 113, 2504–2511.

    Article  PubMed  CAS  Google Scholar 

  • Schläwicke Engström, K., Broberg, K., Concha, G., et al. (2007). Genetic polymorphisms influencing arsenic metabolism: Evidence from Argentina. Environmental Health Perspectives, 115, 599–605.

    Article  PubMed  Google Scholar 

  • Sears, D. A. (1988). History of the treatment of chronic myelocytic leukemia. The American Journal of the Medical Sciences, 296, 85–86.

    Article  PubMed  CAS  Google Scholar 

  • Sen, C. K. (1998). Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochemical Pharmacology, 55, 1747–1748.

    Article  PubMed  CAS  Google Scholar 

  • Sevignani, C., Calin, G. A., Siracusa, L. D., et al. (2006). Mammalian micro-RNAs: A small world for fine-tuning gene expression. Mammalian Genome, 17, 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z. X., Chen, G. Q., Ni, J. H., et al. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 89, 3354–3360.

    PubMed  CAS  Google Scholar 

  • Shen, Z. X., Shi, Z. Z., Fang, J., et al. (2004). All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 101, 5328–5335.

    Google Scholar 

  • Soignet, S. L., Maslak, P., Wang, Z.-G., et al. (1998). Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. The New England Journal of Medicine, 339, 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  • Soignet, S. L., Frankel, S. R., Douer, D., et al. (2001). United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. Journal of Clinical Oncology, 19, 3852–3860.

    PubMed  CAS  Google Scholar 

  • Subbarayan, P. R., Lima, M., & Ardalan, B. (2007). Arsenic trioxide/ascorbic acid therapy in patients with refractory metastatic colorectal carcinoma: A clinical experience. Acta Oncologica, 46, 557–561.

    Article  PubMed  CAS  Google Scholar 

  • Subbarayan, P. R., Lee, K., & Ardalan, B. (2010). Arsenic trioxide suppresses thymidylate synthase in 5-FU-resistant colorectal cancer cell line HT29 in vitro re-sensitizing cells to 5-FU. Anticancer Research, 30, 1157–1162.

    PubMed  CAS  Google Scholar 

  • Sun, H. D., Ma, L., Hu, Z., et al. (1992). Arsenic trioxide treated 32 cases of acute promyelocytic leukemia. Chinese Journal of Integrated Traditional and Western Medicine, 12, 170–172.

    Google Scholar 

  • Tarhini, A. A., Kirkwood, J. M., Tawbi, H., et al. (2008). Safety and efficacy of arsenic trioxide for patients with advanced metastatic melanoma. Cancer, 112, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Tingting, R., Wei, G., Changliang, P., et al. (2010). Arsenic trioxide inhibits osteosarcoma cell invasiveness via MAPK signaling pathway. Cancer Biology & Therapy, 10, 251–257.

    Article  Google Scholar 

  • Vuky, J., Yu, R., Schwartz, L., et al. (2002). Phase II trial of arsenic trioxide in patients with metastatic renal cell carcinoma. Investigational New Drugs, 20, 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. Y., & Chen, Z. (2008). Acute promyelocytic leukemia: From highly fatal to highly curable. Blood, 111, 2505–2515.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. G., Ruggero, D., Ronchetti, S., et al. (1998). PML is essential for multiple apoptotic pathways. Nature Genetics, 20, 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S., & Anderson, K. C. (2001). History of the development of arsenic derivatives in cancer therapy. The Oncologist, 6, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D. D., Xiao, Y. F., Geng, Y., et al. (2010). Antitumor effect and mechanisms of arsenic trioxide on subcutaneously implanted human gastric cancer in nude mice. Cancer Genetics and Cytogenetics, 198, 90–96.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Zhang, Y., Liu, X., et al. (2009). The effects of ultrasound and arsenic trioxide on neurogliocytoma cells and secondary activation of macrophages. Tumori, 95, 780–788.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Li, C. C., & Weissman, A. M. (2004). Regulating the p53 system through ubiquitination. Oncogene, 23, 2096–2106.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, D. R., Chong, S. A., & Nam, M. J. (2009). Proteome profiling of arsenic trioxide-treated human hepatic cancer cells. Cancer Genomics & Proteomics, 6, 269–274.

    CAS  Google Scholar 

  • Zhang, P., Wang, S. Y., & Hu, X. H. (1996). Arsenic trioxide treated 72 cases of acute promyelocytic leukemia. Chinese Journal of Hematology, 17, 58–62.

    Google Scholar 

  • Zhang, W., Ohnishi, K., Shigeno, K., et al. (1998). The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia, 12, 1383–1391.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N., Wu, Z. M., McGowan, E., et al. (2009). Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: Therapeutic potential for ovarian cancer. Cancer Science, 100, 2459–2464.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. S., Song, P. L., Sun, B., et al. (2009). Arsenic trioxide inhibits metastatic potential of mouse hepatoma H22 cells in vitro and in vivo. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 8, 510–517.

    CAS  Google Scholar 

  • Zhen, Y., Zhao, S., Li, Q., et al. (2010). Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Letters, 292, 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X., Seshire, A., Rüster, B., et al. (2007). Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica, 92, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G. B., Zhang, J., Wang, Z. Y., et al. (2007). Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: A paradigm of synergistic molecular targeting therapy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 959–971.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Zhang, Y., Li, J., et al. (2010). Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood, 115, 1697–1702.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X. H., Shen, Y. L., Jing, Y. K., et al. (1999). Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. Journal of the National Cancer Institute, 91, 772–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jiang, H., Liu, L., Zheng, T., Yin, D. (2011). An Evidence-based Perspective of Arsenic Trioxide (As2O3) for Cancer Patients. In: Cho, W. (eds) Evidence-based Anticancer Materia Medica. Evidence-based Anticancer Complementary and Alternative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0526-5_2

Download citation

Publish with us

Policies and ethics