Skip to main content

An Evidence-Based Perspective of Curcuma Longa (Turmeric) for Cancer Patients

  • Chapter
  • First Online:
Book cover Evidence-based Anticancer Materia Medica

Abstract

Curcumin [diferuloylmethane (C21H20O6)], a polyphenol, is an active principle of the perennial herb Curcuma longa (commonly known as turmeric) and derived from the roots (rhizomes) of the plant. Traditionally, turmeric has been used as a foodstuff and a cosmetic and has been a component of Indian Ayurvedic medicine since 1900 BC. As a medicine, curcumin is used mainly for various allergic and inflammatory respiratory conditions, as well as for liver disorders, anorexia, rheumatism and wound healing. These folk medicinal indications are still popular and widely used as alternative agents in many parts of Southeast Asia. Extensive research over the last half-century has revealed important functions of curcumin. In vitro and in vivo research has shown curcumin’s various activities, such as anti-inflammation, cytokines release, antioxidation, immunomodulation, enhancing of the apoptotic process, and anti-angiogenic properties. Curcumin has also been shown to be a mediator of chemo-resistance and radio-resistance. The anticancer effect has been seen in a few clinical trials, mainly as a chemo-prevention agent in colon and pancreatic cancer and in other high-risk premalignant conditions. Some clinical studies on healthy volunteers revealed a low bioavailability, casting doubt on the use of curcumin only as a food additive. In cancer, clinical studies have not shown significant results but the data is richer than in non-malignant conditions. Unlike chemo-therapeutic agents, including those isolated from plants, curcumin is a part of our daily food habit and its use in large quantities since ancient times has proved that it is a safe product. While the pre-clinical data is broad, clinical studies are scarce, although some are on-going. The possible clinical efficacy of this treatment as a chemo-preventive or chemo-therapeutic agent is still to be proven. This chapter ranges from a historical description to pre-clinical data and focuses on existing clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpolat, M., Kanter, M., & Uzal, M. C. (2009). Protective effects of curcumin against gamma radiation-induced ileal mucosal damage. Archives of Toxicology, 83, 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Ammon, H. P., & Wahl, M. A. (1991). Pharmacology of curcuma longa. Planta Medica, 57, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Anand, P., Nair, H. B., Sung, B., et al. (2010). Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochemical Pharmacology, 79, 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Anand, P., Thomas, S. G., Kunnumakkara, A. B, et al. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology, 76, 1590–1611.

    Article  PubMed  CAS  Google Scholar 

  • Atsumi, T., Fujisawa, S., & Tonosaki K. (2005). Relationship between intracellular ROS production and membrane mobility in curcumin- and tetrahydrocurcumin-treated human gingival fibroblasts and human submandibular gland carcinoma cells. Oral Diseases, 11, 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Sela, G., Epelbaum, R., & Schaffer, M. (2010). Curcumin as an anticancer agent: Review of the gap between basic and clinical applications. Current Medicinal Chemistry, 17, 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Bayet-Robert, M., Kwiatkowski, F., Leheurteur, M., et al. (2010). Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biology & Therapy, 9, 8–14.

    Article  CAS  Google Scholar 

  • Braumann, C., Guenther, N., Loeffler, L. M, & Dubiel, W. (2009). Liver metastases after colonic carcinoma—palliative chemotherapy plus curcumin. International Journal of Colorectal Disease, 24, 859–860.

    Article  PubMed  Google Scholar 

  • Cekmen, M., Ilbey, YO., Ozbek, E, et al. (2009). Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47, 1480–1484.

    Article  CAS  Google Scholar 

  • Chainani-Wu, N. (2003). Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). Journal of Alternative and Complementary Medicine (New York, N. Y.), 9, 161–168.

    Article  Google Scholar 

  • Chainani-Wu, N., Silverman, S. Jr., Reingold, A., et al. (2007). A randomized, placebo-controlled, double-blind clinical trial of curcuminoids in oral lichen planus. Phytomedicine, 14, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K. W., Hung, P. S., Lin, I. Y., et al. (2010). Curcumin upregulates insulin-like growth factor binding protein-5 (IGFBP-5) and C/EBPalpha during oral cancer suppression. International Journal of Cancer. Journal International du Cancer, 127, 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Liu, W. H., Chen, B. L., et al. (2010). Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. The Annals of Pharmacotherapy, 44, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, A. L., Hsu, C. H., Lin, J. K., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21, 2895–2900.

    PubMed  CAS  Google Scholar 

  • Cruz-Correa, M., Shoskes, D. A., Sanchez, P., et al. (2006). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology: The official clinical practice journal of the American Gastroenterological Association, 4, 1035–1038.

    Article  CAS  Google Scholar 

  • Dance-Barnes, S. T., Kock, N. D., Moore, J. E., et al. (2009). Lung tumor promotion by curcumin. Carcinogenesis, 30, 1016–1023.

    Article  PubMed  CAS  Google Scholar 

  • Deodhar, S. D, Sethi, R., & Srimal, R. C. (1980). Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). The Indian Journal of Medical Research, 71, 632–634.

    PubMed  CAS  Google Scholar 

  • Dhillon, N., Aggarwal, B. B., Newman, R. A., et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clinical cancer research: An official journal of the American Association for Cancer Research, 14, 4491–4499.

    Article  CAS  Google Scholar 

  • Eigner, D., & Scholz, D. (1999). Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology, 67, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Elwood, P. C., Gallagher, A. M., Duthie, G. G., et al. (2009). Aspirin, salicylates, and cancer. Lancet, 373, 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum, R., Schaffer, M., Vizel, B., et al. (2010). Phase II study of curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutrition and Cancer, 8, 1137–1141.

    Article  Google Scholar 

  • Fryer, R. A., Galustian, C., & Dalgelish, A. G. (2009). Recent advances and developments in treatment strategies against pancreatic cancer. Curr Clinical Pharmacology, 4, 102–112.

    Article  CAS  Google Scholar 

  • Garcea, G., Berry, D. P., Jones, D. J, et al. (2005). Consumption of putative chemopreventive agent curcumin levels in the colorectum and pharmacodynamic consequences. Cancer Epidemiology, Biomarkers & Prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 14, 120–125.

    CAS  Google Scholar 

  • Goel, A., Boland, C. R., & Chauhan, D. P. (2001). Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Letters, 172, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Goel, A., Jhurani, S., & Aggarwal, B. B. (2008). Multi-targeted therapy by curcumin: How spicy is it? Molecular Nutrition & Food Research, 52, 1010–1030.

    Article  CAS  Google Scholar 

  • Hanif, R., Qiao, L., Shiff, S. J., et al. (1997). Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. The Journal of Laboratory and Clinical, 130, 576–584.

    Article  CAS  Google Scholar 

  • Hatcher, H., Planalp, R., Cho, J., et al. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences: CMLS, 65, 1631–1652.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, C. H., & Cheng, A. L. (2007). Clinical studies with curcumin. Advances in Experimental medicine and Biology, 595, 471–480. http://clinicaltrials.gov/ct/search?term_curcumin.

    Google Scholar 

  • Jagetia, G. C. (2007). Radioprotection and radiosensitization by curcumin. Advances in experimental Medicine and Biology, 595, 301–320.

    Article  PubMed  Google Scholar 

  • Jiao, Y., Wilkinson, J. 4th., Di, X., et al. (2009). Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood, 113, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Joe, B., & Lokesh, B. R. (1994). Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochimica et Biophysica Acta, 1224, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. J., Lee, S. H., Price, J. E, et al. (2009). Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. The Breast Journal, 15, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Chen, J., Shi, Y., et al. (2005). Curcumin-induced histone hypoacetylation: The role of reactive oxygen species. Biochemical Pharmacology, 69, 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  • Kawamori, T., Lubet, R., Steele, V. E., et al. (1999). Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Research, 59, 597–601.

    PubMed  CAS  Google Scholar 

  • Khopde, S., Priyadarsini, K. I., Venkatesan, P., et al. (1999). Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophysical Chemistry, 80, 85–91.

    Article  CAS  Google Scholar 

  • Kunnumakkara, A. B., Diagaradjane, P., Anand, P., et al. (2009). Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. International Journal of Cancer. Journal International du Cancer, 125, 2187–2197.

    Article  PubMed  CAS  Google Scholar 

  • Kunwar, A., Sandur, S. K., Krishna, M., et al. (2009). Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. European Journal of Pharmacology, 611, 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Kuttan, R., Bhanumathy, P., Nirmala, K., et al. (1985). Potential anticancer activity of turmeric (Curcuma longa). Cancer Letters, 29, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Kuttan, R., Sudheeran, P. C., & Josph, C. D. (1987). Turmeric and curcumin as topical agents in cancer therapy. Tumori, 73, 29–31.

    PubMed  CAS  Google Scholar 

  • Lampe, V., & Milobedzka, J. (1913) Studien über Curcumin. Berichte der deutschen chemischen Gesellschaft, 46, 2235–2240.

    Article  CAS  Google Scholar 

  • Lee, J. C., Kinniry, P. A., Arguiri, E., et al. (2010). Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiation Research, 173, 590–601.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ari, S., Lichtenberg, D., & Arber, N. (2008). Compositions for treatment of cancer and inflammation. Recent Patents on Anticancer Drug Discovery, 3, 55–62.

    CAS  Google Scholar 

  • Li, L., Braiteh, F. S., & Kurzrock, R. (2005). Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 104, 1322–1331.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. S., Lai, K. C., Hsu, S. C, et al. (2009). Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Letters, 285, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • López-Lázaro, M. (2008). Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Molecular Nutrition & Food Research, 52(Suppl. 1), S103–S127.

    Google Scholar 

  • Mahmoud, N. N., Carothers, A. M., Grunberger, D., et al. (2000). Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis, 21, 921–927.

    Article  PubMed  CAS  Google Scholar 

  • Mendonça, L. M., Dos, Santos, G. C., Antonucci, G. A., et al. (2009). Evaluation of the cytotoxicity and genotoxicity of curcumin in PC12 cells. Mutation Research, 675, 29–34.

    Article  PubMed  Google Scholar 

  • NCI, D. (1996). Clinical development plan: Curcumin. Journal of Cellular Biochemistry. Supplement, 26, 72–85.

    Google Scholar 

  • Oppenheimer, A. (1937). Tumeric (curcumin) in biliary diseases. Lancet, 229, 619–621.

    Article  Google Scholar 

  • Padhye, S., Banerjee, S., Chavan, D., et al. (2009). Fluorocurcumins as cyclooxygenase-2 inhibitor: Molecular docking, pharmacokinetics and tissue distribution in mice. Pharmaceutical Research, 26, 2438–2445.

    Article  PubMed  CAS  Google Scholar 

  • Park, J., Ayyappan, V., Bae, E. K., et al. (2008). Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Molecular Oncology, 2, 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Patel, B. B., Gupta, D., Elliott, A. A., et al. (2010). Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Research, 30, 319–325.

    PubMed  CAS  Google Scholar 

  • Plummer, S. M., & Holloway, K. A., (1999). Manson MM, et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene, 18, 6013–6020.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, S., Rishi, A. K., Xu, H., et al. (2006). Mechanisms of curcumin- and EGF-receptor related protein (ERRP)-dependent growth inhibition of colon cancer cells. Nutrition and Cancer, 55, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Samaha, H. S., Kelloff, G. J., Steele, V., et al. (1997). Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: Apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Research, 57, 1301–1305.

    PubMed  CAS  Google Scholar 

  • Shahani, K., Swaminathan, S. K., Freeman, D., et al. (2010). Injectable sustained release microparticles of curcumin: A new concept for cancer chemoprevention. Cancer Research, 70, 4443–4452.

    Article  PubMed  CAS  Google Scholar 

  • Shankar, T., Shantha, N. V., Ramesh, H. P., et al. (1980). Toxicity studies on turmeric (Curcuma longa): Acute toxicity studies in rats, guinea pigs and monkeys. Indian Journal of Experimental Biology, 18, 73–75.

    PubMed  CAS  Google Scholar 

  • Sharma, R. A., Euden, S. A., Platton, S. L., et al. (2004). Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clinical cancer research: An official journal of the American Association for Cancer Research, 10, 6847–6854.

    Article  CAS  Google Scholar 

  • Sharma, R. A., McLelland, H. R., Hill, K. A., et al. (2001). Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clinical cancer research: An official journal of the American Association for Cancer Research, 7, 1894–1900.

    CAS  Google Scholar 

  • Sou, K., Inenaga, S., Takeoka, S., et al. (2008). Loading of curcumin into macrophages using lipid-based nanoparticles. International Journal of Pharmaceutics, 352, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Strimpakos, A. S., & Sharma, R. A. (2008). Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants & Redox Signaling, 10, 511–545.

    Article  CAS  Google Scholar 

  • Sung, B., Kunnumakkara, A. B., Sethi, G., et al. (2009). Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Molecular Cancer Therapeutics, 8, 959–970.

    Article  PubMed  CAS  Google Scholar 

  • Tharakan, S. T., Inamoto, T., Sung, B., et al. (2010). Curcumin potentiates the antitumor effects of gemcitabine in an orthotopic model of human bladder cancer through suppression of proliferative and angiogenic biomarkers. Biochemical Pharmacology, 79, 218–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bar-Sela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bar-Sela, G., Schaffer, M. (2011). An Evidence-Based Perspective of Curcuma Longa (Turmeric) for Cancer Patients. In: Cho, W. (eds) Evidence-based Anticancer Materia Medica. Evidence-based Anticancer Complementary and Alternative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0526-5_11

Download citation

Publish with us

Policies and ethics