Skip to main content

Cell Membrane Organization

  • Chapter
  • First Online:

Abstract

The cell membrane also called as the plasma membrane or plasmalemma is one biological membrane that separates the interior of the cell from the outside environment. The cell membrane surrounds all cells and is selectively permeable, controlling the movement of substances in and out of cells. One of the main functions of the cell membrane is also to take messages from outside the cell (environment) and convey the same to the internal structures of the cell such as nucleus (DNA), mitochondria, etc., so that appropriate responses can be elicited from the cell to these outside stimuli. The cell contains a variety of biological molecules that include proteins, lipids and a variety of enzyme systems that are involved in various cellular processes such as adhesion, ion channel conductance and cell signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  2. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipurksy SL, Darnell J (2004) Molecular cell biology, 5th edn. WH Freeman, New York

    Google Scholar 

  3. Cooper GM (2000) The cell: a molecular approach, 2nd edn. ASM Press, Washington

    Google Scholar 

  4. Thomas S, Pais AP, Casares S, Brumeanu TD (2004) Analysis of lipid rafts in T cells. Mol Immunol 41:399–409

    Article  PubMed  CAS  Google Scholar 

  5. Thomas S, Kumar RS, Brumeanu TD (2004) Role of lipid rafts in T cells. AITE 52:215–224

    CAS  Google Scholar 

  6. Korade Z (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273

    Article  PubMed  CAS  Google Scholar 

  7. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50(Suppl):S323–S328

    Article  PubMed  Google Scholar 

  8. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    PubMed  CAS  Google Scholar 

  9. Fantini J, Garmy N, Mahfoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 4:1–22

    Article  PubMed  Google Scholar 

  10. Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479

    Article  PubMed  CAS  Google Scholar 

  11. Fivaz M, Abrami L, van der Goot FG (1999) Landing on lipid rafts. Trends Cell Biol 9:212–213

    Article  PubMed  CAS  Google Scholar 

  12. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  PubMed  CAS  Google Scholar 

  13. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  14. Allen JA (2007) Lipid raft microdomains and neurotransmitter signalling. Nature 8:128–140

    CAS  Google Scholar 

  15. Kurzchalia TV, Parton RG (1999) Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431

    Article  PubMed  CAS  Google Scholar 

  16. Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12:23–24

    Article  PubMed  CAS  Google Scholar 

  17. Schmitz G, Grandl M (2008) Update on lipid membrane microdomains. Curr Opin Clin Nutr Metab Care 11:106–112

    Article  PubMed  CAS  Google Scholar 

  18. Ilangumaran S, Borisch B, Hoessli DC (1999) Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 35:455–469

    Article  PubMed  CAS  Google Scholar 

  19. Kail S, Derek T (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  Google Scholar 

  20. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  21. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  Google Scholar 

  22. Brown D (2002) Structure and function of membrane rafts. Int J Med Microbiol 291:433–437

    Article  PubMed  CAS  Google Scholar 

  23. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  24. Taghibiglou C, Bradley CA, Gaertner T, Li Y, Wang Y, Wang YT (2009) Mechanisms involved in cholesterol-induced neuronal insulin resistance. Neuropharmacology 57:268–276

    Article  PubMed  CAS  Google Scholar 

  25. Rivera M, Muto A, Feigel A, Kondo Y, Dardik A (2009) Venous and arterial identity: a role for caveolae? Vascular 17(Suppl 1):S10–S14

    Article  PubMed  Google Scholar 

  26. Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385

    Article  PubMed  CAS  Google Scholar 

  27. Kinoshita MO, Furuya S, Ito S, Shinoda Y, Yamazaki Y, Greimel P, Ito Y, Hashikawa T, Machida T, Nagatsuka Y, Hirabayashi Y (2009) Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors. Biochem J 419:565–575

    Article  PubMed  CAS  Google Scholar 

  28. Field KA, Holowka D, Baird B (1995) FceRI-mediated recruitment of p53/561yn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A 92:9201–9205

    Article  PubMed  CAS  Google Scholar 

  29. Sheets ED, Holowka D, Baird B (1999) Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol 3:95–99

    Article  PubMed  CAS  Google Scholar 

  30. Baird B, Sheets ED, Holowka D (1999) How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys Chem 82:109–119

    Article  PubMed  CAS  Google Scholar 

  31. Field KA, Holowka D, Baird B (1995) FceRI-mediated recruitment of p53/561yn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A 92:9201–9205

    Article  PubMed  CAS  Google Scholar 

  32. Goitsuka R, Kanazashi H, Sasanuma H, Fujimura Y, Hidaka Y, Tatsuno A, Ra C, Hayashi K, Kitamura D (2000) A BASH/SLP-76-related adaptor protein MIST/Clnk involved in IgE receptor-mediated mast cell degranulation. Int Immunol 12:573–580

    Article  PubMed  CAS  Google Scholar 

  33. Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12:23–24

    Article  PubMed  CAS  Google Scholar 

  34. Langlet C, Bernard A-M, Drevot P, He H-T (2000) Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol 12:250–255

    Article  PubMed  CAS  Google Scholar 

  35. Zhang W, Trible RP, Samelson LE (1998) LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9:239–246

    Article  Google Scholar 

  36. Brdi kab T, Jan erný, Ho ej ía V (1998) T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant mMembrane microdomains. Biochem Biophys Res Commun 248:356–360

    Article  Google Scholar 

  37. Carl LA, Cooper JA (2000) Signal transduction: molecular switches in lipid rafts. Nature 404:945–947

    Article  Google Scholar 

  38. Luo C, Wang K, Liu de Q, Li Y, Zhao QS (2008) The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol 5:1–7

    Article  PubMed  CAS  Google Scholar 

  39. Wang XM, Nadeau PE, Lo YT, Mergia A (2010) Caveolin-1 modulates HIV-1 envelope induced bystander apoptosis through gp41. J Virol 84:6515–6526

    Google Scholar 

  40. Gupta N, DeFranco AL (2007) Lipid rafts and B cell signaling. Semin Cell Dev Biol 18:616–626

    Article  PubMed  CAS  Google Scholar 

  41. Gupta N, DeFranco AL (2003) Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14:432–444

    Article  PubMed  CAS  Google Scholar 

  42. Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  43. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  44. Frank P, Lisanti M (2004) Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol 15:523–529

    Article  PubMed  CAS  Google Scholar 

  45. Li X, Everson W, Smart E (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 15:92–96

    Article  PubMed  CAS  Google Scholar 

  46. Pelkmans L (2005) Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta 1746:295–304

    Article  PubMed  CAS  Google Scholar 

  47. Bruno MJ, Koeppe RE 2nd, Andersen OS (2007) Docosahexaenoic acid alters bilayer elastic properties. Proc Natl Acad Sci U S A 104:9638–9643

    Article  PubMed  CAS  Google Scholar 

  48. Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS (2008) n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. J Immunol 181:6236–6243

    PubMed  CAS  Google Scholar 

  49. Ma DW, Seo J, Davidson LA, Callaway ES, Fan YY, Lupton JR, Chapkin RS (2004) n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J 18:1040–1042

    Article  PubMed  CAS  Google Scholar 

  50. Fan YY, McMurray DN, Ly LH, Chapkin RS (2003) Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr 133:1913–1920

    PubMed  CAS  Google Scholar 

  51. Fan YY, Ly LH, Barhoumi R, McMurray DN, Chapkin RS (2004) Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J Immunol 173:6151–6160

    PubMed  CAS  Google Scholar 

  52. Bousserouel S, Raymondjean M, Brouillet A, Béréziat G, Andréani M (2004) Modulation of cyclin D1 and early growth response factor-1 gene expression in interleukin-1beta-treated rat smooth muscle cells by n-6 and n-3 polyunsaturated fatty acids. Eur J Biochem 271:4462–4473

    Article  PubMed  CAS  Google Scholar 

  53. Li Q, Zhang Q, Wang M, Zhao S, Ma J, Luo N, Li N, Li Y, Xu G, Li J (2007) Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 89:169–177

    Article  PubMed  Google Scholar 

  54. Chen W, Jump DB, Esselman WJ, Busik JV (2007) Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid. Invest Ophthalmol Vis Sci 48:18–26

    Article  PubMed  Google Scholar 

  55. Li Q, Zhang Q, Wang M, Liu F, Zhao S, Ma J, Luo N, Li N, Li Y, Xu G, Li J (2007) Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae. Arch Biochem Biophys 466:250–259

    Article  PubMed  CAS  Google Scholar 

  56. Wang L, Lim EJ, Toborek M, Hennig B (2008) The role of fatty acids and caveolin-1 in tumor necrosis factor alpha-induced endothelial cell activation. Metabolism 57:1328–1339

    Article  PubMed  CAS  Google Scholar 

  57. Das UN (2002) A perinatal strategy for preventing adult diseases: the role of long-chain polyunsaturated fatty acids. Kluwer Academic, Boston

    Book  Google Scholar 

  58. Das UN (2010) Metabolic syndrome pathophysiology: the role of essential fatty acids. Wiley-Blackwell, Ames

    Book  Google Scholar 

  59. Das UN (2006) Essential fatty acids: biochemistry, physiology, and pathology. Biotechnol J 1:420–439

    Article  PubMed  CAS  Google Scholar 

  60. Das UN (2006) Essential fatty acids—a review. Curr Pharm Biotechnol 7:467–482

    Article  PubMed  CAS  Google Scholar 

  61. Das UN (2006) Biological significance of essential fatty acids. J Assoc Physicians India 54:309–319

    PubMed  CAS  Google Scholar 

  62. Das UN (2004) Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-β to prevent human essential hypertension. Eur J Clin Nutr 58:195–203

    Article  PubMed  CAS  Google Scholar 

  63. Das UN, Puskás LG (2009) Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis 8:61

    Article  PubMed  Google Scholar 

  64. Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37

    Article  PubMed  Google Scholar 

  65. Das UN (2008) Can endogenous lipid molecules serve as predictors and prognostic markers of coronary heart disease? Lipids Health Dis 7:19

    Article  PubMed  Google Scholar 

  66. Das UN (2008) Can essential fatty acids reduce the burden of disease(s)? Lipids Health Dis 7:9

    Article  PubMed  Google Scholar 

  67. Das UN (2007) A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 76:251–268

    Article  PubMed  CAS  Google Scholar 

  68. Das UN (1999) Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukot Essent Fatty Acids 61:157–163

    Article  PubMed  CAS  Google Scholar 

  69. Das UN (1983) Prostaglandins and gene action. Med Hypotheses 11:185–194

    Article  PubMed  CAS  Google Scholar 

  70. Benavente J, Esteban M, Jaffe BM, Santoro MG (1984) Selective inhibition of viral gene expression as the mechanism of the antiviral action of PGA1 in vaccinia virus-infected cells. J Gen Virol 65(Pt 3):599–608

    Article  PubMed  CAS  Google Scholar 

  71. Ishioka C, Kanamaru R, Sato T, Dei T, Konishi Y, Asamura M, Wakui A (1988) Inhibitory effects of prostaglandin A2 on c-myc expression and cell cycle progression in human leukemia cell line HL-60. Cancer Res 48:2813–2818

    PubMed  CAS  Google Scholar 

  72. Marui N, Sakai T, Hosokawa N, Yoshida M, Aoike A, Kawai K, Nishino H, Fukushima M (1990) N-myc suppression and cell cycle arrest at G1 phase by prostaglandins. FEBS Lett 270:15–18

    Article  PubMed  CAS  Google Scholar 

  73. Acarregui MJ, Snyder JM, Mitchell MD, Mendelson CR (1990) Prostaglandins regulate surfactant protein A (SP-A) gene expression in human fetal lung in vitro. Endocrinology 127:1105–1113

    Article  PubMed  CAS  Google Scholar 

  74. Khan I, Hossain A, Whitman GF, Sarkar NH, McDonough PG (1993) Differential induction of c-jun expression by PGF2-alpha in rat ovary, uterus and adrenal. Prostaglandins 46:139–144

    PubMed  CAS  Google Scholar 

  75. Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT (1992) Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol 148:2845–2852

    PubMed  CAS  Google Scholar 

  76. Desanctis JB, Varesio L, Radzioch D (1994) Prostaglandins inhibit lipoprotein lipase gene expression in macrophages. Immunology 81:605–610

    PubMed  CAS  Google Scholar 

  77. Bui T, Kuo C, Rotwein P, Straus DS (1997) Prostaglandin A2 specifically represses insulin-like growth factor-I gene expression in C6 rat glioma cells. Endocrinology 138:985–993

    Article  PubMed  CAS  Google Scholar 

  78. Walton SL, Burne TH, Gilbert CL (2002) Prostaglandin F2alpha-induced nest-building behaviour is associated with increased hypothalamic c-fos and c-jun mRNA expression. J Neuroendocrinol 14:711–723

    Article  PubMed  CAS  Google Scholar 

  79. Tang CH, Yang RS, Fu WM (2005) Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase C alpha, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem 280:22907–22916

    Article  PubMed  CAS  Google Scholar 

  80. Kim CH, Park YG, Noh SH, Kim YK (2005) PGE2 induces the gene expression of bone matrix metalloproteinase-1 in mouse osteoblasts by cAMP-PKA signaling pathway. Int J Biochem Cell Biol 37:375–385

    Article  PubMed  CAS  Google Scholar 

  81. Huang JC, Wun WS, Goldsby JS, Egan K, FitzGerald GA, Wu KK (2007) Prostacyclin receptor signaling and early embryo development in the mouse. Hum Reprod 22:2851–2856

    Article  PubMed  CAS  Google Scholar 

  82. Fang IM, Yang CH, Yang CM, Chen MS (2007) Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells. Exp Eye Res 85:667–677

    Article  PubMed  CAS  Google Scholar 

  83. Renedo M, Gayarre J, García-Domínguez CA, Pérez-Rodríguez A, Prieto A, Cañada FJ, Rojas JM, Pérez-Sala D (2007) Modification and activation of Ras proteins by electrophilic prostanoids with different structure are site-selective. Biochemistry 46:6607–6616

    Article  PubMed  CAS  Google Scholar 

  84. Stanley DW, Goodman C, An S, McIntosh A, Song Q (2008) Prostaglandins A1 and E1 influence gene expression in an established insect cell line (BCIRL-HzAM1 cells). Insect Biochem Mol Biol 38:275–284

    Article  PubMed  CAS  Google Scholar 

  85. Yamada T (2009) Regulation of the expression of inducible nitric oxide synthase by prostanoids. Yakugaku Zasshi 129:1211–1214

    Article  PubMed  CAS  Google Scholar 

  86. Marei WF, Wathes DC, Fouladi-Nashta AA (2009) The effect of linolenic Acid on bovine oocyte maturation and development. Biol Reprod 81:1064–1072

    Article  PubMed  CAS  Google Scholar 

  87. Das UN (2011) Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 27:21–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Das, U.N. (2011). Cell Membrane Organization. In: Molecular Basis of Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0495-4_5

Download citation

Publish with us

Policies and ethics