Skip to main content

Inflammation

  • Chapter
  • First Online:

Abstract

Inflammation is the complex biological response of vascular tissue to harmful stimuli such as pathogens, damaged cells or irritants [1] that consists of both vascular and cellular responses. Inflammation is a protective attempt by the organism to remove the injurious stimuli and initiate healing process and to restore both structure and function. It should be understood that infection and inflammation are not synonymous: infection is caused by an exogenous pathogen while inflammation is the response of the organism to the pathogen. Inflammation may be local or systemic, and it can be acute or chronic. During the inflammatory process, the reaction of blood vessels is unique that leads to the accumulation of fluid and leukocytes in extravascular tissues. The reaction of blood vessels can be in the form of vasodilatation that is seen in the form of hyperemia at the site(s) of injury, that increases blood supply to the injured tissue/organ so that cellular elements, antibodies and nutrients can reach the site of injury in adequate amounts to eliminate the inflammation-inducing agent and/or repair process can be initiated once inflammation subsides. Thus, both injury and repair are two sides of the inflammatory process that are very closely intertwined such that it is difficult to separate these two processes. In fact, in majority of the instances, both inflammation to injury and repair occur almost simultaneously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235

    PubMed  CAS  Google Scholar 

  2. Das UN (2006) Clinical laboratory tools to diagnose inflammation. Adv Clin Chem 41:189–229

    CAS  Google Scholar 

  3. Lau D, Mollanau H, Eiserich JP et al (2005) Myeloperoxidase mediates neutrophil activation by association with CD11/CD18 integrins. Proc Natl Acad Sci U S A 102:431–436

    PubMed  CAS  Google Scholar 

  4. Baldus S, Heitzer T, Eiserich JP et al (2004) Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic Biol Med 37:902–911

    PubMed  CAS  Google Scholar 

  5. DeLeo FR, Goedken M, McCormick SJ, Nauseef WM (1998) A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest 101:2900–2909

    PubMed  CAS  Google Scholar 

  6. Koziol-Montewka M, Kolodziejek A, Oles J (2004) Study on myeloperoxidase role in antituberculous defense in the context of cytokine activation. Inflammation 28:53–58

    PubMed  CAS  Google Scholar 

  7. Choi DK, Pennathur S, Perier C, Tieu K, Teismann P, Wu DC, Jackson-Lewis V, Vila M, Vonsattel JP, Heinecke JW, Przedborski S (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25:6594–6600

    PubMed  CAS  Google Scholar 

  8. Kimura H (2010) Hydrogen sulfide: its production, release and functions. Amino Acids (in press)

    Google Scholar 

  9. Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123

    PubMed  CAS  Google Scholar 

  10. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulphide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505

    PubMed  CAS  Google Scholar 

  11. Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 19:623–625

    PubMed  CAS  Google Scholar 

  12. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198

    PubMed  CAS  Google Scholar 

  13. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292:L960–L971

    PubMed  CAS  Google Scholar 

  14. Anuar F, Whiteman M, Siau JL, Kwong SE, Bhatia M, Moore PK (2006) Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide- treated rat. Br J Pharmacol 147:966–974

    PubMed  CAS  Google Scholar 

  15. Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL, Sellke FW (2009) Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 138:977–984

    PubMed  CAS  Google Scholar 

  16. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137:569–578

    PubMed  CAS  Google Scholar 

  17. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123

    PubMed  CAS  Google Scholar 

  18. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal (in press)

    Google Scholar 

  19. Ekundi-Valentim E, Santos KT, Camargo EA, Denadai-Souza A, Teixeira SA, Zanoni CI, Grant AD, Wallace JL, Muscará MN, Costa SK (2010) Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br J Pharmacol (in press)

    Google Scholar 

  20. Spiller F, Orrico MI, Nascimento DC, Czaikoski PG, Souto FO, Alves-Filho JC, Freitas A, Carlos D, Montenegro MF, Neto AF, Ferreira SH, Rossi MA, Hothersall JS, Assreuy J, Cunha FQ (2010) Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med (in press)

    Google Scholar 

  21. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal (in press)

    Google Scholar 

  22. Baldus S, Heitzer T, Eiserich JP et al (2004) Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic Biol Med 37:902–911

    PubMed  CAS  Google Scholar 

  23. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    PubMed  CAS  Google Scholar 

  24. Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LH (1991) Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181:1392–1397

    PubMed  CAS  Google Scholar 

  25. Fujii H, Ichimori K, Hoshiai K, Nakazawa H (1997) Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272:32773–32778

    PubMed  CAS  Google Scholar 

  26. Selemidis S (2008) Suppressing NADPH oxidase-dependent oxidative stress in the vasculature with nitric oxide donors. Clin Exp Pharmacol Physiol 35:1395–1401

    PubMed  CAS  Google Scholar 

  27. McDonald DM, Thurston G, Baluk P (1999) Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6:7–22

    PubMed  CAS  Google Scholar 

  28. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  29. Zeck-Kapp G, Kapp A, Busse R, Riede UN (1990) Interaction of granulocytes and endothelial cells upon stimulation with tumor necrosis factor-alpha: an ultrastructural study. Immunobiology 181:267–275

    PubMed  CAS  Google Scholar 

  30. Rosen H, Klebanoff SJ (1985) Oxidation of microbial iron-sulfur centers by the myeloperoxidase-H2O2-halide antimicrobial system. Infect Immun 47:613–618

    PubMed  CAS  Google Scholar 

  31. Turco J, Liu H, Gottlieb SF, Winkler HH (1998) Nitric oxide- mediated inhibition of the ability of Rickettsia prowazekii to infect mouse fibroblasts and mouse macrophage like cells. Infect Immun 66:558–566

    PubMed  CAS  Google Scholar 

  32. Krinsky NI (1974) Singlet excited oxygen as a mediator of the antibacterial action of leukocytes. Science 186:363–365

    PubMed  CAS  Google Scholar 

  33. Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR, for the VEGF Inhibition Study in Ocular Neovascularization Clinical trial Group (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    PubMed  CAS  Google Scholar 

  34. Bressler NM (2009) Antiangiogenic approaches to age-related macular degeneration today. Ophthalmology 116(10 Suppl):S15–S23

    PubMed  Google Scholar 

  35. Das UN (2000) Recent advances in the pathobiology of septicemia and septic shock. J Assoc Physicians India 48:1181–1184

    PubMed  CAS  Google Scholar 

  36. Cohen J, Carlet J (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 24:1431–1440

    PubMed  CAS  Google Scholar 

  37. Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, Dal Nogare A, Nasraway S, Berman S, Cooney R, Levy H, Baughman R, Rumbak M, Light RB, Poole L, Allred R, Constant J, Pennington J, Porter S (1998) Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet 351:929–933

    PubMed  CAS  Google Scholar 

  38. Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium derived contracting factor. Am J Physiol 257:433–437

    Google Scholar 

  39. Kumar KV, Das UN (1993) Are free radicals involved in the pathobiology of human essential hypertension? Free Rad Res Commun 19:59–66

    CAS  Google Scholar 

  40. Nakazono L, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 88:10045–10048

    PubMed  CAS  Google Scholar 

  41. Das UN (1992) Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses 39:90–94

    PubMed  CAS  Google Scholar 

  42. Das UN (2002) A Perinatal strategy for preventing adult disease: The role of long-chain polyunsaturated fatty acids. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  43. Das UN (2010) Metabolic syndrome pathophysiology: the role of essential fatty acids. Wily-Blackwell, Ames, IA

    Google Scholar 

  44. Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, Flower RJ, Perretti M, Serhan CN (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461:1287–1291

    PubMed  CAS  Google Scholar 

  45. Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and pro-resolving lipid mediators. In: Abbas AK, Galli SJ, Howley PM (eds) Annu Rev Pathol Mech Dis 3:279–312

    Google Scholar 

  46. Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447:869–874

    PubMed  CAS  Google Scholar 

  47. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:249–261

    Google Scholar 

  48. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent anti-inflammatory and pro-resolving actions. J Exp Med 206:15–23

    PubMed  CAS  Google Scholar 

  49. Muller WA (2002) Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 82:521

    PubMed  CAS  Google Scholar 

  50. Kumar V, Abbas AK, Fausto N (2005) Acute and chronic inflammation. In: Robbins and cotran pathologic basis of disease, 7th edn. Elsevier Saunders, St. Louis, MO, pp 47–86

    Google Scholar 

  51. Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF, Loison F, Sarraj B, Kasorn A, Jo H, Blanchard C, Zirkle D, McDonald D, Pai SY, Serhan CN, and Luo HR (2010) Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci U S A 107:3546–3551

    PubMed  CAS  Google Scholar 

  52. Cicchetti G, Allen PG, Glogauer M (2002) Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit Rev Oral Biol Med 13:220–228

    PubMed  Google Scholar 

  53. Bucci M, Roviezzo F, Posadas I et al (2005) Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. Proc Natl Acad Sci U S A 102:904–908

    PubMed  CAS  Google Scholar 

  54. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J Biol Chem 280:10040–10046

    PubMed  CAS  Google Scholar 

  55. Barua RS, Ambrose JA, Srivastava S, DeVoe MC, Eales-Reynolds LJ (2003) Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 107:2342–2347

    PubMed  CAS  Google Scholar 

  56. Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, Szabó C, Ceriello A (2004) Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. J Thromb Haemost 2:1453–1459

    PubMed  CAS  Google Scholar 

  57. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183:259–267

    PubMed  CAS  Google Scholar 

  58. Richardson M, Hadcock SJ, DeReske M, Cybulsky MI (1994) Increased expression in vivo of VCAM-1 and E-selectin by the aortic endothelium of normolipemic and hyperlipemic diabetic rabbits. Arterioscler Thromb 14:760–769

    PubMed  CAS  Google Scholar 

  59. Hackman A, Abe Y, Insull W Jr, Pownall H, Smith L, Dunn K, Gotto AM Jr, Ballantyne CM (1996) Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation 93:1334–1338

    PubMed  CAS  Google Scholar 

  60. Sakai A, Kume N, Nishi E, Tanoue K, Miyasaka M, Kita T (1997) P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscler Thromb Vasc Biol 17:310–316

    PubMed  CAS  Google Scholar 

  61. Nomura S, Kanazawa S, Fukuhara S (2003) Effects of eicosapentaenoic acid on platelet activation markers and cell adhesion molecules in hyperlipidemic patients with Type 2 diabetes mellitus. J Diabetes Complications 17:153–159

    PubMed  Google Scholar 

  62. Rezaie-Majd A, Prager GW, Bucek RA, Schernthaner GH, Maca T, Kress HG, Valent P, Binder BR, Minar E, Baghestanian M (2003) Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 23:397–403

    PubMed  CAS  Google Scholar 

  63. Stulc T, Vrablík M, Kasalová Z, Marinov I, Svobodová H, Ceska R (2008) Leukocyte and endothelial adhesion molecules in patients with hypercholesterolemia: the effect of atorvastatin treatment. Physiol Res 57:184–194

    PubMed  CAS  Google Scholar 

  64. Bolewski A, Lipiecki J, Plewa R, Burchardt P, Siminiak T (2008) The effect of atorvastatin treatment on lipid profile and adhesion molecule levels in hypercholesterolemic patients: relation to low-density lipoprotein receptor gene polymorphism. Cardiology 111:140–146

    PubMed  CAS  Google Scholar 

  65. Benítez MB, Cuniberti L, Fornari MC, Gómez Rosso L, Berardi V, Elikir G, Stutzbach P, Schreier L, Wikinski R, Brites F (2008) Endothelial and leukocyte adhesion molecules in primary hypertriglyceridemia. Atherosclerosis 197:679–687

    PubMed  Google Scholar 

  66. Alipour A, van Oostrom AJ, Izraeljan A, Verseyden C, Collins JM, Frayn KN, Plokker TW, Elte JW, Castro Cabezas M (2008) Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 28:792–797

    PubMed  CAS  Google Scholar 

  67. Kumar KV, Das UN (1993) Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun 19:59–66

    PubMed  CAS  Google Scholar 

  68. Pedrinelli R, Dell’Omo G, Di Bello V, Pellegrini G, Pucci L, Del Prato S, Penno G (2004) Low-grade inflammation and microalbuminuria in hypertension. Arterioscler Thromb Vasc Biol 24:2414–2419

    PubMed  CAS  Google Scholar 

  69. Syrenicz A, Garanty-Bogacka B, Syrenicz M, Gebala A, Dawid G, Walczak M (2006) Relation of low-grade inflammation and endothelial activation to blood pressure in obese children and adolescents. Neuro Endocrinol Lett 27:459–464

    PubMed  CAS  Google Scholar 

  70. Das UN (2006) Hypertension as a low-grade systemic inflammatory condition that has its origins in the perinatal period. J Assoc Physicians India 54:133–142

    PubMed  CAS  Google Scholar 

  71. Kuklinska AM, Mroczko B, Musial WJ, Sawicki R, Kozieradska A, Waszkiewicz E, Szmitkowski M (2009) High-sensitivity C-reactive protein and total antioxidant status in patients with essential arterial hypertension and dyslipidemia. Adv Med Sci 54:225–232

    PubMed  CAS  Google Scholar 

  72. Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium derived contracting factor. Am J Physiol 257:433–437

    Google Scholar 

  73. Nakazono L, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 88:10045–10048

    PubMed  CAS  Google Scholar 

  74. Jun T, Ke-yan F, Catalano M (1996) Increased superoxide anion production in humans: a possible mechanism for the pathogenesis of hypertension. J Hum Hypertens 10:305–309

    PubMed  CAS  Google Scholar 

  75. Wolf G (2000) Free radical production and angiotensin. Curr Hypertens Rep 2:167–173

    PubMed  CAS  Google Scholar 

  76. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel WG (1999) Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-NAD(P)H-oxidases. Cardiovasc Res 44:215–222

    PubMed  CAS  Google Scholar 

  77. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, Gordon FJ, Harrison DG (2010) Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–283

    PubMed  CAS  Google Scholar 

  78. Retailleau K, Belin de Chantemèle EJ, Chanoine S, Guihot AL, Vessières E, Toutain B, Faure S, Bagi Z, Loufrani L, Henrion D (2010) Reactive oxygen species and cyclooxygenase 2-derived thromboxane A2 reduce angiotensin II type 2 receptor vasorelaxation in diabetic rat resistance arteries. Hypertension 55:339–344

    PubMed  CAS  Google Scholar 

  79. Mazor R, Itzhaki O, Sela S, Yagil Y, Cohen-Mazor M, Yagil C, Kristal B (2010) Tumor necrosis factor-alpha: a possible priming agent for the polymorphonuclear leukocyte-reduced nicotinamide-adenine dinucleotide phosphate oxidase in hypertension. Hypertension 55:353–362

    PubMed  CAS  Google Scholar 

  80. Walker AE, Seibert SM, Donato AJ, Pierce GL, Seals DR (2010) Vascular endothelial function is related to white blood cell count and myeloperoxidase among healthy middle-aged and older adults. Hypertension 55:363–369

    PubMed  CAS  Google Scholar 

  81. Padma M, Das UN (1996) Effect of cis-unsaturated fatty acids on cellular oxidant stress in macrophage tumor (AK-5) cells in vitro. Cancer Lett 109:63–75

    PubMed  CAS  Google Scholar 

  82. Das UN (1991) Arachidonic acid as a mediator of some of the actions of phorbolmyristate acetate, a tumor promotor and inducer of differentiation. Prostaglandins Leukot Essent Fatty Acids 42:241–244

    PubMed  CAS  Google Scholar 

  83. Das UN, Padma M, Sangeetha P et al (1990) Stimulation of free radical generation in human leukocytes by various stimulants including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun 167:1030–1036

    PubMed  CAS  Google Scholar 

  84. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac R-L (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammatory signals. J Exp Med 196:1025–1037

    PubMed  CAS  Google Scholar 

  85. Claria J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 92:9475–9479

    PubMed  CAS  Google Scholar 

  86. Serhan CN (2009) Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost 7(Suppl 1):44–48

    PubMed  CAS  Google Scholar 

  87. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007

    PubMed  CAS  Google Scholar 

  88. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297

    PubMed  CAS  Google Scholar 

  89. Segal AW (2006) How superoxide production by neutrophil leukocytes kills microbes. Novartis Found Symp 279:92–98 discussion 98–100, 216–219

    PubMed  CAS  Google Scholar 

  90. Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 427:853–858

    PubMed  CAS  Google Scholar 

  91. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836

    PubMed  CAS  Google Scholar 

  92. Aratani Y, Kura F, Watanabe H et al (2002) Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol 40:557–563

    PubMed  CAS  Google Scholar 

  93. Aratani Y, Kura F, Watanabe H et al (2004) In vivo role of myeloperoxidase for the host defense. Jpn J Infect Dis 57:S15

    PubMed  Google Scholar 

  94. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer MC, Maeda N, Koyama H (2002) Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185:1833–1837

    PubMed  CAS  Google Scholar 

  95. Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48:1478–1488

    PubMed  CAS  Google Scholar 

  96. Netea MG, van Tits LJ, Curfs JH, Amiot F, Meis JF, van der Meer JW, Kullberg BJ (1999) Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol 163:1498–1505

    PubMed  CAS  Google Scholar 

  97. Vonk AG, Netea MG, van Krieken JH, van der Meer JW, Kullberg BJ (2002) Delayed clearance of intraabdominal abscesses caused by Candida albicans in tumor necrosis factor-alpha- and lymphotoxin-alpha-deficient mice. J Infect Dis 186:1815–1822

    PubMed  CAS  Google Scholar 

  98. Ferrante A, Nandoskar M, Walz A, Goh DH, Kowanko IC (1988) Effects of tumour necrosis factor alpha and interleukin-1 alpha and beta on human neutrophil migration, respiratory burst and degranulation. Int Arch Allergy Appl Immunol 86:82–91

    PubMed  CAS  Google Scholar 

  99. Test ST (1991) Effect of tumor necrosis factor on the generation of chlorinated oxidants by adherent human neutrophils. J Leukoc Biol 50:131–139

    PubMed  CAS  Google Scholar 

  100. Netea MG, Meer JW, Verschueren I, Kullberg BJ (2002) CD40/CD40 ligand interactions in the host defense against disseminated Candida albicans infection: the role of macrophage-derived nitric oxide. Eur J Immunol 32:1455–1463

    PubMed  CAS  Google Scholar 

  101. Marieb E (2001) Human anatomy & physiology. Benjamin Cummings, San Francisco, CA, p 414

    Google Scholar 

  102. Paiva TB, Tominaga M, Paiva ACM (1970) Ionization of histamine, N-acetylhistamine, and their iodinated derivatives. J Med Chem 13:689–692

    PubMed  CAS  Google Scholar 

  103. Monroe E, Daly A, Shalhoub R (1997) Appraisal of the validity of histmine-induced wheal and flare to predict the clinical efficacy of antihistamines. J Allergy Clin Immunol 99:S789–S806

    Google Scholar 

  104. Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15

    PubMed  CAS  Google Scholar 

  105. Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199:183–189

    PubMed  CAS  Google Scholar 

  106. White JM, Rumbold GR (1988) Behavioural effects of histamine and its antagonists: a review. Psychopharmacology 95:1–14

    PubMed  CAS  Google Scholar 

  107. Cará AM, Lopes-Martins RA, Antunes E, Nahoum CR, De Nucci G (1995) The role of histamine in human penile erection. Br J Urol 75:220–224

    PubMed  Google Scholar 

  108. Ito C (2004) The role of the central histaminergic system on schizophrenia. Drug News Perspect 17:383–387

    PubMed  CAS  Google Scholar 

  109. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–66

    PubMed  CAS  Google Scholar 

  110. Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206(Pt 2):223–231

    Google Scholar 

  111. Stahl SM, Mignon L, Meyer JM (2009) Which comes first: atypical antipsychotic treatment or cardiometabolic risk? Acta Psychiatr Scand 119:171–179

    PubMed  CAS  Google Scholar 

  112. Buckland PR, Hoogendoorn B, Guy CA, Smith SK, Coleman SL, O’Donovan MC (2005) Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. Am J Psychiatry 162:613–615

    PubMed  Google Scholar 

  113. Holmes MC, French KL, Seckl JR (1997) Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. J Neurosci 17:4056–4065

    PubMed  CAS  Google Scholar 

  114. Leibowitz SF (1990) The role of serotonin in eating disorders. Drugs 39(Suppl 3):33–48

    PubMed  CAS  Google Scholar 

  115. de Wit R, Aapro M, Blower PR (2005) Is there a pharmacological basis for differences in 5-HT3-receptor antagonist efficacy in refractory patients? Cancer Chemother Pharmacol 56:231–238

    PubMed  Google Scholar 

  116. Kravitz EA (1988) Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241:1775–1781

    PubMed  CAS  Google Scholar 

  117. Yeh SR, Fricke RA, Edwards DH (1996) The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271:366–369

    PubMed  CAS  Google Scholar 

  118. Caspi N, Modai I, Barak P, Waisbourd A, Zbarsky H, Hirschmann S, Ritsner M (2001) Pindolol augmentation in aggressive schizophrenic patients: a double-blind crossover randomized study. Int Clin Psychopharmacol 16:111–115

    PubMed  CAS  Google Scholar 

  119. Greg B (2000) Suicide linked to serotonin gene. CMAJ 162:1343

    Google Scholar 

  120. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    PubMed  CAS  Google Scholar 

  121. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    PubMed  CAS  Google Scholar 

  122. Levinson DF (2006) The genetics of depression: a review. Biol Psychiatry 60:84–92

    PubMed  CAS  Google Scholar 

  123. Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, Ashrafi K (2008) Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 7:533–544

    PubMed  CAS  Google Scholar 

  124. Loer CM, Kenyon CJ (1993) Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci 13:5407–5417

    PubMed  CAS  Google Scholar 

  125. Lipton J, Kleemann G, Ghosh R, Lints R, Emmons SW (2004) Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 24:7427–7434

    PubMed  CAS  Google Scholar 

  126. Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22:1877–1893

    PubMed  CAS  Google Scholar 

  127. Ruad AF, Thummel CS (2008) Serotonin and insulin signaling team up to control growth in Drosophila. Genes Dev 22:1851–1855

    Google Scholar 

  128. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, Gachet C, Bader M, Clavien PA (2006) Platelet-derived serotonin mediates liver regeneration. Science 312:104–107

    PubMed  CAS  Google Scholar 

  129. Matondo RB, Punt C, Homberg J, Toussaint MJ, Kisjes R, Korporaal SJ, Akkerman JW, Cuppen E, de Bruin A (2009) Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration. Am J Physiol Gastrointest Liver Physiol 296:G963–G968

    PubMed  CAS  Google Scholar 

  130. Collet C, Schiltz C, Geoffroy V, Maroteaux L, Launay JM, deVernejoul MC (2008) The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J 22:418–427

    PubMed  CAS  Google Scholar 

  131. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    PubMed  CAS  Google Scholar 

  132. Marieb EN (2009) Essentials of human anatomy & physiology, 8th edn. Pearson/Benjamin Cummings, San Francisco, CA, p 336

    Google Scholar 

  133. Baskin SI (1991) Principles of cardiac toxicology. CRC Press, Boca Raton, FL

    Google Scholar 

  134. Schurad B, Horowski R, Jähnichen S, Görnemann T, Tack J, Pertz HH (2006) Proterguride, a highly potent dopamine receptor agonist promising for transdermal administration in Parkinson’s disease: interactions with alpha(1)-, 5-HT(2)-and H(1)-receptors. Life Sci 78:2358–2364

    PubMed  CAS  Google Scholar 

  135. Ben Arous J, Laffont S, Chatenay D (2009) Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS ONE 4:e7584

    PubMed  Google Scholar 

  136. Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    PubMed  CAS  Google Scholar 

  137. Côté F, Thévenot E, Fligny C et al (2003) Disruption of the nonneuronaltph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A 100:13525–13530

    PubMed  Google Scholar 

  138. Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, Boyé P, Vilianovitch L, Sohr R, Tenner K, Hörtnagl H, Bader M (2009) Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci U S A 106:10332–10337

    PubMed  CAS  Google Scholar 

  139. Savelieva KV, Zhao S, Pogorelov VM et al (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3:e3301

    PubMed  Google Scholar 

  140. Enrica A, Elisabetta C, Boris M, Tiziana R, Antonio C, Mumna AB, Renato C, Cornelius G (2008) Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Science 321:130–133

    Google Scholar 

  141. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296:2124–2132

    PubMed  CAS  Google Scholar 

  142. Frazer A, Hensler JG (1999) Understanding the neuroanatomical organization of serotonergic cells in the bran provides insight into the functions of this neurotransmitter. In: Bernard WA, Fisher SK, Wayne AR, Uhler MD (Hrsg) Basic neurochemistry, 6th edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  143. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    PubMed  CAS  Google Scholar 

  144. Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862

    PubMed  CAS  Google Scholar 

  145. Watts SW, Priestley JR, Thompson JM (2009) Serotonylation of vascular proteins important to contraction. PLoS One 4:e5682

    PubMed  Google Scholar 

  146. Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    PubMed  CAS  Google Scholar 

  147. Bliznakov EG (1980) Serotonin and its precursors as modulators of the immunological responsiveness in mice. J Med 11:81–105

    PubMed  CAS  Google Scholar 

  148. Mashek K, Devoino LV, Kadletsova O, Idova GV, Morozova NB (1985) Changes in the level of serotonin in the brain and immunocompetent organs during the formation of the immune response. Fiziol Zh SSSR Im I M Sechenova 71:992–997

    PubMed  CAS  Google Scholar 

  149. Devoino L, Morozova N, Cheido M (1988) Participation of serotoninergic system in neuroimmunomodulation: intraimmune mechanisms and the pathways providing an inhibitory effect. Int J Neurosci 40:111–128

    PubMed  CAS  Google Scholar 

  150. Ciz M, Komrskova D, Pracharova L, Okenkova K, Cizova H, Moravcova A, Jancinova V, Petrikova M, Lojek A, Nosal R (2007) Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets 18:583–590

    PubMed  CAS  Google Scholar 

  151. Menard G, Turmel V, Bissonnette EY (2007) Serotonin modulates the cytokine network in the lung: involvement of prostaglandin E2. Clin Exp Immunol 150:340–348

    PubMed  CAS  Google Scholar 

  152. Muller T, Durk T, Blumental B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453

    PubMed  Google Scholar 

  153. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177:6422–6432

    PubMed  CAS  Google Scholar 

  154. Sookhai S, Wang JH, McCourt M, O’Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 126:314–322

    PubMed  CAS  Google Scholar 

  155. Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond HP (2000) Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 14:295–299

    PubMed  CAS  Google Scholar 

  156. Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Husain B, Schedlowski M, Exton MS (2006) Dopamine affects cellular immune functions during polymicrobial sepsis. Intensive Care Med 32:731–739

    PubMed  CAS  Google Scholar 

  157. Wang G-J, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357

    PubMed  CAS  Google Scholar 

  158. Esposito K, Nappo F, Marfella R et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Role of oxidative stress. Circulation 106:2067–2072

    PubMed  CAS  Google Scholar 

  159. Aso Y, Wakabayashi S, Nakano T, Yamamoto R, Takebayashi K, Inukai T (2006) High serum high-sensitivity C-reactive protein concentrations are associated with relative cardiac sympathetic overactivity during the early morning period in type 2 diabetic patients with metabolic syndrome. Metabolism 55:1014–1021

    PubMed  CAS  Google Scholar 

  160. Dungan KM, Braithwaite SS, Preiser J-C (2009) Stress hyperglycemia. Lancet 373:1798–1807

    PubMed  CAS  Google Scholar 

  161. Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci U S A 91:12912–12916

    PubMed  CAS  Google Scholar 

  162. Josefsson E, Bergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88:140–146

    PubMed  CAS  Google Scholar 

  163. Gulik T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. Proc Natl Acad Sci U S A 86:6763–6767

    Google Scholar 

  164. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Rooijen NV, Huber-Lag MS, Neubig RR, Ward PA (2007) Phagocyte- derived catecholamines enhance acute inflammatory injury. Nature 449:721–726

    PubMed  CAS  Google Scholar 

  165. Bergmann A, Eulenberg C, Wellner M, Rolle S, Luft F, Kettritz R (2010) Aldosterone abrogates nuclear factor ĸB–mediated tumor necrosis factor α production in human neutrophils via the mineralocorticoid receptor. Hypertension 55:370–379

    PubMed  CAS  Google Scholar 

  166. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23:41–45

    PubMed  CAS  Google Scholar 

  167. Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13:RA214–RA221

    PubMed  CAS  Google Scholar 

  168. Van Maanen MA, Vervoordeldonk MJ, Tak PP (2009) The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol 5:229–232

    PubMed  Google Scholar 

  169. Luger TA, Brzoska T (2007) alpha-MSH related peptides: a new class of anti-inflammatory and immunomodulating drugs. Ann Rheum Dis 66(Suppl 3):52–55

    Google Scholar 

  170. Taylor AW, Kitaichi N (2008) The diminishment of experimental autoimmune encephalomyelitis (EAE) by neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) therapy. Brain Behav Immun 22:639–646

    PubMed  CAS  Google Scholar 

  171. Park MC, Chung SJ, Park YB, Lee SK (2009) Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis. Joint Bone Spine 76:170–175

    PubMed  CAS  Google Scholar 

  172. Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR, Romanatto T, Carvalheir JB, Oliveira AL, Saad MJ, Velloso LA (2009) High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 4:e5045

    PubMed  Google Scholar 

  173. Matsumoto T, Miyatsuji A, Miyawaki T, Yanagimoto Y, Moritani T (2003) Potential association between endogenous leptin and sympatho-vagal activities in young obese Japanese women. Am J Hum Biol 15:8–15

    PubMed  Google Scholar 

  174. Holler J, Zakrzewicz A, Kaufmann A, Wilhelm J, Fuchs-Moll G, Dietrich H, Padberg W, Kuncova J, Kummer W, Grau V (2008) Neuropeptide Y is expressed by rat mononuclear blood leukocytes and strongly down-regulated during inflammation. J Immunol 181:6906–6912

    PubMed  CAS  Google Scholar 

  175. Dimitrijevic M, Stanojevic S, Mitic S, Vujic V, Kovacevic-Jovanovic V, Mitic K, von Horsten S, Kosec D (2006) Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch. Peptides 27:3208–3215

    PubMed  CAS  Google Scholar 

  176. Dimitrijevic M, Stanojevic S, Mitic S, Kustriovic N, Vujic V, Miletic T, Kovacevic-Jovanovic V (2008) The anti-inflammatory effect of neuropeptide Y (NPY) in rats is dependent on dipeptidyl peptidase 4 (DP4) activity and age. Peptides 29:2179–2187

    PubMed  CAS  Google Scholar 

  177. Chandrasekharan B, Bala V, Kolachala VL, Vijaykumar M, Jones D, Gewirtz AT, Sitaraman SV, Srinivasan S (2008) Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis. PLoS One 3:e3304

    PubMed  Google Scholar 

  178. Hernanz A, Tato E, De la Fuente M, de Miguel E, Arnalich F (1996) Differential effects of gastrin-releasing peptide, neuropeptide Y, somatostatin and vasoactive intestinal peptide on interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha production by whole blood cells from healthy young and old subjects. J Neuroimmunol 71:25–30

    PubMed  CAS  Google Scholar 

  179. King PJ, Widdowson PS, Doods H, Williams G (2000) Effect of cytokines on hypothalamic neuropeptide Y release in vitro. Peptides 21:143–146

    PubMed  CAS  Google Scholar 

  180. Kos K, Harte AL, James S, Snead DR, O’Hare JP, McTernan PG, Kumar S (2007) Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. Am J Physiol Endocrinol Metab 293:E1335–E1340

    PubMed  CAS  Google Scholar 

  181. Lopez M, Lage R, Saha AK et al (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7:389–399

    PubMed  CAS  Google Scholar 

  182. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66

    PubMed  CAS  Google Scholar 

  183. Yada T, Mutoh K, Azuma T, Hyodo S, Kangawa K (2006) Ghrelin stimulates phagocytosis and superoxide production in fish leukocytes. J Endocrinol 189:57–65

    PubMed  CAS  Google Scholar 

  184. Ates Y, Degertekin B, Erdil A, Yaman H, Dagalp K (2008) Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status. Dig Dis Sci 53:2215–2221

    PubMed  CAS  Google Scholar 

  185. Mager U, Kolehmainen M, d Mello VD, Schwab U, Laaksonen DE, Rauramaa R, Gylling H, Atalay M, Pulkkinen L, Uusitupa M (2008) Expression of ghrelin gene in peripheral blood mononuclear cells and plasma ghrelin concentrations in patients with metabolic syndrome. Eur J Endocrinol 158:499–510

    PubMed  CAS  Google Scholar 

  186. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55:352–360

    PubMed  CAS  Google Scholar 

  187. Blandino-osano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar-Diosdado M (2008) Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1. J Mol Endocrinol 41:35–44

    Google Scholar 

  188. Kim SJ, Nian C, Doudet DJ, McIntosh CH (2009) Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 58:641–651

    PubMed  CAS  Google Scholar 

  189. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202:1023–1029

    PubMed  CAS  Google Scholar 

  190. Hamza M, Wang XM, Adam A, Brahim JS, Rowan JS, Carmona GN, Dionne RA (2010) Kinin B1 receptors contributes to acute pain following minor surgery in humans. Mol Pain 6:12

    PubMed  Google Scholar 

  191. Raslan F, Schwarz T, Meuth SG, Austinat M, Bader M, Renne T, Roosen K, Stoll G, Sirén AL, Kleinschnitz C (2010) Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J Cereb Blood Flow Metab (in press)

    Google Scholar 

  192. Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L (2010) Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem 391:345–355

    PubMed  CAS  Google Scholar 

  193. Das UN (2006) Essential fatty acids – a review. Curr Pharm Biotechnol 7:467–482

    PubMed  CAS  Google Scholar 

  194. Das UN (2006) Essential fatty acids: biochemistry, physiology, and pathology. Biotechnology J 1:420–439

    CAS  Google Scholar 

  195. Ritter JM, Harding I, Warren JB (2009) Precaution, cyclooxygenase inhibition, and cardiovascular risk. Trends Pharmacol Sci 30:503–508

    PubMed  CAS  Google Scholar 

  196. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac R-L (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammatory signals. J Exp Med 196:1025–1037

    PubMed  CAS  Google Scholar 

  197. Claria J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 92:9475–9479

    PubMed  CAS  Google Scholar 

  198. Chiang N, Gronert K, Clish CB, O’Brien JA, Freeman MW, Serhan CN (1999) Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J Clin Invest 104:309–316

    PubMed  CAS  Google Scholar 

  199. Gilroy DW (2005) New insights into the anti-inflammatory actions of aspirin-induction of nitric oxide through the generation of epi-lipoxins. Mem Inst Oswaldo Cruz 100(Suppl 1):49–54

    PubMed  CAS  Google Scholar 

  200. Paul-Clark MJ, Van Cao T, Moradi-Bidhendi N, Cooper D, Gilroy DW (2004) 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med 200:69–78

    PubMed  CAS  Google Scholar 

  201. Wen F, Watanabe K, Yoshida M (2000) Nitric oxide enhances PGI(2)production by human pulmonary artery smooth muscle cells. Prostaglandins Leukot Essent Fatty Acids 62:369–378

    PubMed  CAS  Google Scholar 

  202. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114:1335–1342

    PubMed  CAS  Google Scholar 

  203. Plum J, Huang C, Grabensee B, Schrör K, Meyer-Kirchrath J (2002) Prostacyclin enhances the expression of LPS/INF-gamma-induced nitric oxide synthase in human monocytes. Nephron 91:391–398

    PubMed  CAS  Google Scholar 

  204. Chiang N, Gronert K, Clish CB, O’Brien JA, Freeman MW, Serhan CN (1999) Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J Clin Invest 104:309–316

    PubMed  CAS  Google Scholar 

  205. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation signals in resolution. Nat Immunol 2:612–619

    PubMed  CAS  Google Scholar 

  206. Bandeira-Melo C, Serra MF, Diaz BI, Cordeiro RSB, Silva PMR, Lenzi HL, Bakhle YS, Serhan CN, Martins MA (2000) Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostronglus costaricensis-infected rats: relationship with concurrent eosinophilia. J Immunol 164:1029–1036

    PubMed  CAS  Google Scholar 

  207. Serhan CN, Maddox JF, Petasis NA, Akritopoulou-Zanze I, Papayianni A, Brady HR, Colgan SP, Madara JL (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34:14609–14615

    PubMed  CAS  Google Scholar 

  208. Sethi S, Eastman AY, Eaton JW (1996) Inhibition of phagocyte-endothelium interactions by oxidized fatty acids: a natural anti-inflammatory mechanism? J Lab Clin Med 128:27–38

    PubMed  CAS  Google Scholar 

  209. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192:1197–1204

    PubMed  CAS  Google Scholar 

  210. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronet K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    PubMed  CAS  Google Scholar 

  211. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23

    PubMed  CAS  Google Scholar 

  212. Serhan CN (2009) Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost 7(Suppl 1):44–48

    PubMed  CAS  Google Scholar 

  213. Das UN, Puskás LG (2009) Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis 8:61

    PubMed  Google Scholar 

  214. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445

    PubMed  CAS  Google Scholar 

  215. Hamasaki Y, Mojarad M, Saga T, Tai HH, Said SI (1984) Platelet-activating factor raises airway and vascular pressures and induces edema in lungs perfused with platelet-free solution. Am Rev Respir Dis 129:742–746

    PubMed  CAS  Google Scholar 

  216. Vemulapalli S, Chiu PJ, Barnett A (1984) Cardiovascular and renal action of platelet-activating factor in anesthetized dogs. Hypertension 6:489–493

    PubMed  CAS  Google Scholar 

  217. Kawaguchi H, Yasuda H (1986) Platelet-activating factor stimulates prostaglandin synthesis in cultured cells. Hypertension 8:192–197

    PubMed  CAS  Google Scholar 

  218. Bruynzeel PL, Koenderman L, Kok PT, Hameling ML, Verhagen J (1986) Platelet-activating factor (PAF-acether) induced leukotriene C4 formation and luminol dependent chemiluminescence by human eosinophils. Pharmacol Res Commun 18(Suppl):61–69

    PubMed  Google Scholar 

  219. Bruijnzeel PL, Kok PT, Hamelink ML, Kijne AM, Verhagen J (1987) Platelet-activating factor induces leukotriene C4 synthesis by purified human eosinophils. Prostaglandins 34:205–214

    PubMed  CAS  Google Scholar 

  220. Dubois C, Bissonnette E, Rola-Pleszczynski M (1989) Platelet-activating factor (PAF) enhances tumor necrosis factor production by alveolar macrophages. Prevention by PAF receptor antagonists and lipoxygenase inhibitors. J Immunol 143:964–970

    PubMed  CAS  Google Scholar 

  221. McColl SR, Krump E, Naccache PH, Poubelle PE, Braquet P, Braquet M, Borgeat P (1991) Granulocyte-macrophage colony-stimulating factor increases the synthesis of leukotriene B4 by human neutrophils in response to platelet-activating factor. Enhancement of both arachidonic acid availability and 5-lipoxygenase activation. J Immunol 146:1204–1211

    PubMed  CAS  Google Scholar 

  222. Wirthmueller U, de Weck AL, Dahinden CA (1990) Studies on the mechanism of platelet-activating factor production in GM-CSF primed neutrophils: involvement of protein synthesis and phospholipase A2 activation. Biochem Biophys Res Commun 170:556–562

    PubMed  CAS  Google Scholar 

  223. Shindo K, Koide K, Fukumura M (1997) Enhancement of leukotriene B4 release in stimulated asthmatic neutrophils by platelet activating factor. Thorax 52:1024–1029

    PubMed  CAS  Google Scholar 

  224. Thivierge M, Rola-Pleszczynski M (1992) Platelet-activating factor enhances interleukin-6 production by alveolar macrophages. J Allergy Clin Immunol 90:796–802

    PubMed  CAS  Google Scholar 

  225. Ha SW, Lee CS (2010) Differential effect of platelet activating factor on 1-methyl-4-phenylpyridinium-induced cell death through regulation of apoptosis-related protein activation. Neurochem Int (in press)

    Google Scholar 

  226. Anuurad E, Ozturk Z, Enkhmaa B, Pearson TA, Berglund L (2010) Association of lipoprotein-associated phospholipase A2 with coronary artery disease in African-Americans and Caucasians. J Clin Endocrinol Metab (in press)

    Google Scholar 

  227. Khakpour H, Frishman WH (2009) Lipoprotein-associated phospholipase A2: an independent predictor of cardiovascular risk and a novel target for immunomodulation therapy. Cardiol Rev 17:222–229

    PubMed  Google Scholar 

  228. Wilensky RL, Macphee CH (2009) Lipoprotein-associated phospholipase A(2) and atherosclerosis. Curr Opin Lipidol 20:415–420

    PubMed  CAS  Google Scholar 

  229. Mantovani A, Sozzani S, Introna M (1997) Endothelial activation by cytokines. Ann NY Acad Sci 832:93–116

    PubMed  CAS  Google Scholar 

  230. Das UN (1998) Oxidants, anti-oxidants, essential fatty acids, eicosanoids, cytokines, gene/oncogene expression and apoptosis in systemic lupus erythematosus. J Assoc Physicians India 46:630–634

    PubMed  CAS  Google Scholar 

  231. Binder C, Schulz M, Hiddemann W, Oellerich M (1999) Induction of inducible nitric oxide synthase is an essential part of tumor necrosis factor-alpha-induced apoptosis in MCF-7 and other epithelial tumor cells. Lab Invest 79:1703–1712

    PubMed  CAS  Google Scholar 

  232. Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610

    PubMed  CAS  Google Scholar 

  233. Das UN, Padma M, Sagar PS et al (1990) Stimulation of free radical generation in human leukocytes by various agents including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun 167:1030–1036

    PubMed  CAS  Google Scholar 

  234. Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832

    PubMed  CAS  Google Scholar 

  235. Das UN (2007) Insulin in the critically ill with focus on cytokines, reactive oxygen species, HLA-DR expression. J Assoc Physicians India 55(Suppl):56–65

    PubMed  Google Scholar 

  236. Zanotti S, Kumar A, Kumar A (2002) Cytokine modulation in sepsis and septic shock. Expert Opin Investig Drugs 11:1061–1075

    PubMed  CAS  Google Scholar 

  237. Argiles JM, Lopez-Soriano J, Busquets S, Lopez-Soriano FJ (1997) Journey from cachexia to obesity by TNF. FASEB J 11:743–751

    PubMed  CAS  Google Scholar 

  238. Ayoub S, Hickey MJ, Morand EF (2008) Mechanisms of disease: macrophage migration inhibitory factor in SLE, RA and atherosclerosis. Nat Clin Pract Rheumatol 4:98–105

    PubMed  CAS  Google Scholar 

  239. Verschuren L, Kooistra T, Bernhagen J, Voshol PJ, Ouwens DM, van Erk M, de Vries-van der Weij J, Leng L, van Bockel JH, van Dijk KW, Fingerle-Rowson G, Bucala R, Kleemann R (2009) MIF deficiency reduces chronic inflammation in white adipose tissue and impairs the development of insulin resistance, glucose intolerance, and associated atherosclerotic disease. Circ Res 105:99–107

    PubMed  CAS  Google Scholar 

  240. Toso C, Emamaullee JA, Merani S, Shapiro AM (2008) The role of macrophage migration inhibitory factor on glucose metabolism and diabetes. Diabetologia 51:1937–1946

    PubMed  CAS  Google Scholar 

  241. Herder C, Kolb H, Koenig W, Haastert B, Müller-Scholze S, Rathmann W, Holle R, Thorand B, Wichmann HE (2006) Association of systemic concentrations of macrophage migration inhibitory factor with impaired glucose tolerance and type 2 diabetes: results from the cooperative health research in the region of Augsburg, Survey 4 (KORA S4). Diabetes Care 29:368–371

    PubMed  CAS  Google Scholar 

  242. Dandona P, Aljada A, Ghanim H, Mohanty P, Tripathy C, Hofmeyer D, Chaudhuri A (2004) Increased plasma concentration of macrophage migration inhibitory factor (MIF) and MIF mRNA in mononuclear cells in the obese and the suppressive action of metformin. J Clin Endocrinol Metab 89:5043–5047

    PubMed  CAS  Google Scholar 

  243. Vozarova B, Stefan N, Hanson R, Lindsay RS, Bogardus C, Tataranni PA, Metz C, Bucala R (2002) Plasma concentrations of macrophage migration inhibitory factor are elevated in Pima Indians compared to Caucasians and are associated with insulin resistance. Diabetologia 45:1739–1741

    PubMed  CAS  Google Scholar 

  244. Bacher M, Deuster O, Aljabari B, Egensperger R, Neff F, Jessen F, Popp J, Noelker C, Reese JP, Al-Abed Y, Dodel R (2010) The role of macrophage migration inhibitory factor in Alzheimer’s disease. Mol Med 16:116–121

    PubMed  CAS  Google Scholar 

  245. Edwards KM, Bosch JA, Engeland CG, Cacioppo JT, Marucha PT (2010) Elevated Macrophage Migration Inhibitory Factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain Behav Immun 24:1202–1208

    Google Scholar 

  246. Conboy L, Varea E, Castro JE, Sakouhi-Ouertatani H, Calandra T, Lashuel HA, Sandi C (in press) Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry

    Google Scholar 

  247. de la Fontaine L, Schwarz MJ, Riedel M, Dehning S, Douhet A, Spellmann I, Kleindienst N, Zill P, Plischke H, Gruber R, Müller N (2006) Investigating disease susceptibility and the negative correlation of schizophrenia and rheumatoid arthritis focusing on MIF and CD14 gene polymorphisms. Psychiatry Res 144:39–47

    Google Scholar 

  248. Das UN (2001) Is insulin and anti-inflammatory molecule? Nutrition 17:409–413

    PubMed  CAS  Google Scholar 

  249. Das UN (2003) Is insulin an endogenous cardioprotector? Curr Opin Crit Care 9:375–383

    PubMed  Google Scholar 

  250. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    PubMed  CAS  Google Scholar 

  251. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    PubMed  CAS  Google Scholar 

  252. Yoshie O, Imai T, Nomiyama H (2001) Chemokines in immunity. Adv Immunol 78:57–110

    PubMed  CAS  Google Scholar 

  253. Johnston B, Butcher EC (2002) Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 14:83–92

    PubMed  CAS  Google Scholar 

  254. Bacon KB, Schall TJ (1996) Chemokines as mediators of allergic inflammation. Int Arch Allergy Immunol 109:97–109

    PubMed  CAS  Google Scholar 

  255. Struyf S, Gouwy M, Dillen C, Proost P, Opdenakker G, Van Dame J (2005) Chemokines synergize in the recruitment of circulating neutrophils into inflamed tissue. Eur J Immunol 35:1583–1591

    PubMed  CAS  Google Scholar 

  256. Nanki T, Takada K, Komano Y, Morio T, Kanegane H, Nakajima A, Lipsky PE, Miyasaka N (2009) Chemokine receptor expression and functional effects of chemokines on B cells: implication in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 11:R149

    PubMed  Google Scholar 

  257. McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456

    PubMed  CAS  Google Scholar 

  258. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    PubMed  CAS  Google Scholar 

  259. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Ann Rev Immunol 18:217–242

    Google Scholar 

  260. Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Förster R (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197:1199–1204

    PubMed  CAS  Google Scholar 

  261. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  262. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685

    PubMed  CAS  Google Scholar 

  263. Hiki K, Hattori R, Kawai C, Yui Y (1992) Purification of insoluble nitric oxide synthase from rat cerebellum. J Biochem 111:556–558

    PubMed  CAS  Google Scholar 

  264. Evans T, Carpenter A, Cohen J (1992) Purification of a distinctive form of endotoxin-induced nitric oxide synthase from rat liver. Proc Natl Acad Sci U S A 89:5361–5365

    PubMed  CAS  Google Scholar 

  265. Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB (2001) Role of nitric oxide in inflammation. Acta Physiol Scand 173:113–118

    PubMed  CAS  Google Scholar 

  266. Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147

    PubMed  CAS  Google Scholar 

  267. Shatalin K, Gusarov I, Avetissova E, Shatalina Y, McQuade LE, Lippard SJ, Nudler E (2008) Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc Natl Acad Sci U S A 105:1009–1013

    PubMed  CAS  Google Scholar 

  268. Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    PubMed  CAS  Google Scholar 

  269. Das UN (2010) Essential fatty acids and their metabolites in the context of hypertension. Hypertension Res 33:782–785

    Google Scholar 

  270. Das UN, Krishna Mohan I, Vijay Kumar K, Sravan Kumar G, Chandra Sekhar C (1993) Beneficial effect of L-arginine in non-insulin dependent diabetes mellitus: a potential role for nitric oxide. Med Sci Res 21:669–670

    Google Scholar 

  271. Mohan KI, Das UN (1997) Oxidant stress, anti-oxidants and nitric oxide in non-insulin dependent diabetes mellitus. Med Sci Res 25:55–57

    CAS  Google Scholar 

  272. Makino N, Maeda T, Sugano M, Satoh S, Watanabe R, Abe N (2005) High serum TNF-alpha level in Type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J Diabetes Complications 19:347–355

    PubMed  Google Scholar 

  273. Ikeda K, Nara Y, Tagami M, Yamori Y (1997) Nitric oxide deficiency induces myocardial infarction in hypercholesterolaemic stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 24:344–348

    PubMed  CAS  Google Scholar 

  274. Gauthier TW, Scalia R, Murohara T, Guo JP, Lefer AM (1995) Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol 15:1652–1659

    PubMed  CAS  Google Scholar 

  275. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL (1999) Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 103:897–905

    PubMed  CAS  Google Scholar 

  276. Turco J, Liu H, Gottlieb SF, Winkler HH (1998) Nitric oxide-mediated inhibition of the ability of Rickettsia prowazekii to infect mouse fibroblasts and mouse macrophage like cells. Infect Immun 66:558–566

    PubMed  CAS  Google Scholar 

  277. Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10:21–28

    PubMed  CAS  Google Scholar 

  278. Darrah PA, Hondalus MK, Chen Q, Ischiropoulos H, Mosser DM (2000) Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages. Infect Immun 68:3587–3593

    PubMed  CAS  Google Scholar 

  279. Bose M, Farnia P, Sharma S, Chattopadhya D, Saha K (1999) Nitric oxide dependent killing of mycobacterium tuberculosis by human mononuclear phagocytes from patients with active tuberculosis. Int J Immunopathol Pharmacol 12:69–79

    PubMed  CAS  Google Scholar 

  280. Barak Y, Schreiber F, Thorne SH, Contag CH, Debeer D, Matin A (2010) Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing. BMC Cancer 10:146

    PubMed  Google Scholar 

  281. Rockett KA, Awburn MM, Aggarwal BB, Cowden WB, Clark IA (1992) In vivo induction of nitrite and nitrate by tumor necrosis factor, lymphotoxin, and interleukin-1: possible roles in malaria. Infect Immun 60:3725–3730

    PubMed  CAS  Google Scholar 

  282. Seguin MC, Klotz FW, Schneider I, Weir JP, Goodbary M, Slayter M, Raney JJ, Aniagolu JU, Green SJ (1994) Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells. J Exp Med 180:353–358

    PubMed  CAS  Google Scholar 

  283. Naotunne TS, Karunaweera ND, Mendis KN, Carter R (1993) Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78:555–562

    PubMed  CAS  Google Scholar 

  284. Gouado I, Pankoui MJB, Fotso KH, Zambou O, Nguélé S, Combes V, Grau GE, Amvam ZPH (2009) Physiopathologic factors resulting in poor outcome in childhood severe malaria in Cameroon. Pediatr Infect Dis J 28:1081–1084

    PubMed  Google Scholar 

  285. Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit M (2009) Genetic variation in neuronal nitric oxide synthase (nNOS) gene and susceptibility to cerebral malaria in Indian adults. Infect Genet Evol 9:908–911

    PubMed  CAS  Google Scholar 

  286. Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, Intaglietta M, van der Heyde HC (2006) Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 12:1417–1422

    PubMed  CAS  Google Scholar 

  287. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, Levesque MC, Mwaikambo ED, Granger DL (2003) Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 361:676–678

    PubMed  CAS  Google Scholar 

  288. Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D (2003) Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 60:1623–1635

    PubMed  CAS  Google Scholar 

  289. Clark IA, Awburn MM, Whitten RO, Harper CG, Liomba NG, Molyneux ME, Taylor TE (2003) Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malaria J 2:6

    Google Scholar 

  290. Clark I, Awburn M (2002) Migration inhibitory factor in the cerebral and systemic endothelium in sepsis and malaria. Crit Care Med 30(5 Suppl):S263–S267

    PubMed  CAS  Google Scholar 

  291. Sumitani K, Kamijo R, Nagumo M (1997) Cytotoxic effect of sodium nitroprusside on cancer cells: involvement of apoptosis and suppression of c-myc and c-myb proto-oncogene expression. Anticancer Res 17(2A):865–871

    PubMed  CAS  Google Scholar 

  292. Lee MH, Jang MH, Kim EK, Han SW, Cho SY, Kim CJ (2005) Nitric oxide induces apoptosis in mouse C2C12 myoblast cells. J Pharmacol Sci 97:369–376

    PubMed  CAS  Google Scholar 

  293. Lee YJ, Lee KH, Kim HR, Jessup JM, Seol DW, Kim TH, Billiar TR, Song YK (2001) Sodium nitroprusside enhances TRAIL-induced apoptosis via a mitochondria-dependent pathway in human colorectal carcinoma CX-1 cells. Oncogene 20:1476–1485

    PubMed  CAS  Google Scholar 

  294. Salvucci O, Carsana M, Bersani I, Tragni G, Anichini A (2001) Antiapoptotic role of endogenous nitric oxide in human melanoma cells. Cancer Res 61:318–326

    PubMed  CAS  Google Scholar 

  295. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR (1999) Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 274:17325–17333

    PubMed  CAS  Google Scholar 

  296. Wenzel U, Kuntz S, De Sousa UJ, Daniel H (2003) Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int J Cancer 106:666–675

    PubMed  CAS  Google Scholar 

  297. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S (2000) Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 87:540–542

    PubMed  CAS  Google Scholar 

  298. Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS (2001) eNOS activity is reduced in senescent human endothelial cells: preservation by hTERT immortalization. Circ Res 89:793–798

    PubMed  CAS  Google Scholar 

  299. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    PubMed  CAS  Google Scholar 

  300. Scalera F, Borlak J, Beckmann B, Martens-Lobenhoffer J, Thum T, Täger M, Bode-Böger SM (2004) Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol 24:1816–1822

    PubMed  CAS  Google Scholar 

  301. Bode-Böger SM, Martens-Lobenhoffer J, Täger M, Schröder H, Scalera F (2005) Aspirin reduces endothelial cell senescence. Biochem Biophys Res Commun 334:1226–1232

    PubMed  Google Scholar 

  302. Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U (2009) Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120:2438–2447

    PubMed  Google Scholar 

  303. Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M (2005) Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci 25:2366–2375

    PubMed  CAS  Google Scholar 

  304. Das UN (2010) Obesity: genes, brain, gut, and environment. Nutrition 26:459–473

    PubMed  CAS  Google Scholar 

  305. Rao AA, Sridhar GR, Srinivas B, Das UN (2008) Bioinformatics analysis of functional protein sequences reveals a role for brain-derived neurotrophic factor in obesity and type 2 diabetes mellitus. Med Hypotheses 70:424–429

    PubMed  CAS  Google Scholar 

  306. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961

    PubMed  CAS  Google Scholar 

  307. Sornelli F, Fiore M, Chaldakov GN, Aloe L (2009) Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen Physiol Biophys 28:179–183

    PubMed  Google Scholar 

  308. Yamanaka M, Itakura Y, Tsuchida A, Nakagawa T, Taiji M (2008) Brain-derived neurotrophic factor (BDNF) prevents the development of diabetes in prediabetic mice. Biomed Res 29:147–153

    PubMed  CAS  Google Scholar 

  309. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, Wiegand SJ, Wong V (1999) Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 48:588–594

    PubMed  CAS  Google Scholar 

  310. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    PubMed  CAS  Google Scholar 

  311. Belaaouaj A (2002) Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect 4:1259–1264

    PubMed  CAS  Google Scholar 

  312. Root RK, Metcalf J, Oshino N, Chance B (1975) H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest 55:945–955

    PubMed  CAS  Google Scholar 

  313. Tauber AI, Babior BM (1977) Evidence for hydroxyl radical production by human neutrophils. J Clin Invest 60:374–379

    PubMed  CAS  Google Scholar 

  314. Goldstein IM, Cerqueira M, Lind S, Kaplan HB (1977) Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J Clin Invest 59:249–254

    PubMed  CAS  Google Scholar 

  315. Goldstein IM, Kaplan HB, Radin A, Frosch M (1976) Independent effects of IgG and complement upon human polymorphonuclear leukocyte function. J Immunol 117:1282–1287

    PubMed  CAS  Google Scholar 

  316. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    PubMed  CAS  Google Scholar 

  317. Schmidt KN, Amstad P, Cerutti P, Baeuerle PA (1995) The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 2:13–22

    PubMed  CAS  Google Scholar 

  318. Yamaguchi Y, Matsumura F, Liang J, Okabe K, Ohshiro H, Ishihara K, Matsuda T, Mori K, Ogawa M (1999) Neutrophil elastase and oxygen radicals enhance monocyte chemoattractant protein-expression after ischemia/reperfusion in rat liver. Transplantation 68:1459–468

    PubMed  CAS  Google Scholar 

  319. Lorne E, Zmijewski JW, Zhao X, Liu G, Tsuruta Y, Park YJ, Dupont H, Abraham E (2008) Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol 294:C985–C993

    PubMed  CAS  Google Scholar 

  320. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54:285–322

    PubMed  CAS  Google Scholar 

  321. Harrison S, Geppetti P. Substance P (2001) Int J Biochem Cell Biol 33:555–576

    Google Scholar 

  322. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302:839–845

    PubMed  CAS  Google Scholar 

  323. Visser M, Bouter LM, McQuillan GM et al (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282:2131

    PubMed  CAS  Google Scholar 

  324. Hotamisligil GS (1999) The role of TNF-alpha and TNF receptors in obesity and insulin resistance. J Intern Med 245:621

    PubMed  CAS  Google Scholar 

  325. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin-6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    PubMed  CAS  Google Scholar 

  326. Das UN (1999) GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus and longevity. J Assoc Physicians India 47:431–435

    PubMed  CAS  Google Scholar 

  327. Fichtlscherer S, Rosenberger G, Walter DH et al (2000) Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 102:1000–1006

    PubMed  CAS  Google Scholar 

  328. Cleland SJ, Sattar N, Petrie JR et al (2000) Endothelial dysfunction as a possible link between C-reactive protein levels and cardiovascular disease. Clin Sci (Colch) 98:531–535

    CAS  Google Scholar 

  329. Das UN (2007) Vagus nerve stimulation, depression, and inflammation. Neuropsychopharmacology 32:2053–2054

    PubMed  Google Scholar 

  330. Das UN (2007) Is depression a low-grade systemic inflammatory condition? Am J Clin Nutr 85:1665–1666

    PubMed  CAS  Google Scholar 

  331. Pitsavos C, Panagiotakos DB, Tzima N, Lentzas Y, Chrysohoou C, Das UN, Stefanadis C (2007) Diet, exercise, and C-reactive protein levels in people with abdominal obesity: the ATTICA epidemiological study. Angiology 58:225–233

    PubMed  CAS  Google Scholar 

  332. Taibes G (2002) Does inflammation cut to the heart of the matter? Science 296:242–245

    Google Scholar 

  333. Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, Hawkins PN, Myers RM, Smith MD, Polara A, Cobb AJ, Ley SV, Aquilina JA, Robinson CV, Sharif I, Gray GA, Sabin CA, Jenvey MC, Kolstoe SE, Thompson D, Wood SP (2006) Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 440:1217–1221

    PubMed  CAS  Google Scholar 

  334. Gill R, Kemp JA, Sabin C, Pepys MB (2004) Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab 24:1214–1218

    PubMed  CAS  Google Scholar 

  335. Mullen PG, Windsor AC, Walsh CJ et al (1995) Tumor necrosis factor-alpha and interleukin-6 selectively regulate neutrophil function in vitro. J Surg Res 58:124–130

    PubMed  CAS  Google Scholar 

  336. Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium derived vascular relaxing factor. Nature 320:454–456

    PubMed  CAS  Google Scholar 

  337. Kumar KV, Das UN (1997) Effect of cis-unsaturated fatty acids, prostaglandins and free radicals on angiotensin-converting enzyme activity in vitro. Proc Soc Exp Biol Med 214:374–379

    PubMed  CAS  Google Scholar 

  338. Das UN (2000) Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essen Fatty Acids 63:351–362

    CAS  Google Scholar 

  339. Das UN (2005) Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 11:RA155–RA162

    PubMed  CAS  Google Scholar 

  340. Pellme F, Smith U, Funahashi T, Matsuzawa Y, Brekke H, Wiklund O, Taskinen MR, Jansson PA (2003) Circulating adiponectin levels are reduced in non-obese but insulin resistant first-degree relatives of type 2 diabetic patients. Diabetes 52:1182–1186

    PubMed  CAS  Google Scholar 

  341. Krakoff J, Funahashi T, Stehouwer CDA, Schalkwijk CG, Tanaka S, Matsuzawa Y, Kobes S, Tataranni PA, Hanson RL, Knowler WC, Lindsay RS (2003) Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26:1745–1751

    PubMed  CAS  Google Scholar 

  342. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    PubMed  CAS  Google Scholar 

  343. Tracy RP (2003) Inflammation, the metabolic syndrome and cardiovascular risk. Int J Clin Pract Suppl 134:10–17

    PubMed  CAS  Google Scholar 

  344. Sattar N, Scherbakova O, Ford I, O’Reilly DS, Stanley A, Forrest E, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J west of Scotland coronary prevention study (2004) Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 53:2855–2860

    PubMed  CAS  Google Scholar 

  345. Matsumoto K, Sera Y, Abe Y, Ueki Y, Tominaga T, Miyake S (2003) Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis 169:317–321

    PubMed  CAS  Google Scholar 

  346. Wallen NH, Held C, Rehnqvist N, Hjemdahl P (1999) Elevated serum intercellular adhesion molecule-1 and vascular adhesion molecule-1 among patients with stable angina pectoris who suffer cardiovascular death or non-fatal myocardial infarction. Eur Heart J 20:1039–1043

    PubMed  CAS  Google Scholar 

  347. Mulvihill NT, Foley JB, Murphy RT, Curtin R, Crean PA, Walsh M (2001) Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 85:623–627

    PubMed  CAS  Google Scholar 

  348. Ridker PM, Rifai N, Pfeiffer M, Sacks F, Lepage S, Braunwald E (2000) Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 101:2149–2153

    PubMed  CAS  Google Scholar 

  349. Patti G, Di Sciascio G, D’Ambrosio A, Dicuonzo G, Abbate A, Dobrina A (2002) Prognostic value of interleukin-1 receptor antagonist in patients undergoing percutaneous coronary intervention. Am J Cardiol 89:372–376

    PubMed  CAS  Google Scholar 

  350. Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94:874–877

    PubMed  CAS  Google Scholar 

  351. Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG, Ginnetti F, Dinarello CA, Maseri A (1999) Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99:2079–2084

    PubMed  CAS  Google Scholar 

  352. Lee KS, Chung JH, Choi TK, Suh SY, Oh BH, Hong CH (2009) Peripheral cytokines and chemokines in Alzheimer’s disease. Dement Geriatr Cogn Disord 28:281–287

    PubMed  CAS  Google Scholar 

  353. Pellicanò M, Bulati M, Buffa S, Barbagallo M, Di Prima A, Misiano G, Picone P, Di Carlo M, Nuzzo D, Candore G, Vasto S, Lio D, Caruso C, Romano GC (2010) Systemic immune responses in alzheimer’s disease: in vitro mononuclear cell activation and cytokine production. J Alzheimers Dis (in press)

    Google Scholar 

  354. Reale M, Iarlori C, Feliciani C, Gambi D (2008) Peripheral chemokine receptors, their ligands, cytokines and Alzheimer’s disease. J Alzheimers Dis 14:147–159

    PubMed  CAS  Google Scholar 

  355. Mattace-Raso FU, Verwoert GC, Hofman A, Witteman JC (2010) Inflammation and incident-isolated systolic hypertension in older adults: the Rotterdam study. J Hypertens 28:892–895

    PubMed  CAS  Google Scholar 

  356. Gacka M, Dobosz T, Szymaniec S, Bednarska-Chabowska D, Adamiec R, Sadakierska-Chudy A (2010) Proinflammatory and atherogenic activity of monocytes in type 2 diabetes. J Diabetes Complications 24:1–8

    PubMed  Google Scholar 

  357. Antonelli A, Fallahi P, Rotondi M, Ferrari SM, Romagnani P, Ghiadoni L, Serio M, Taddei S, Ferrannini E (2008) High serum levels of CXC chemokine ligand 10 in untreated essential hypertension. J Hum Hypertens 22:579–581

    PubMed  CAS  Google Scholar 

  358. Touyz RM, Savoia C, He Y, Endemann D, Pu Q, Ko EA, Deciuceis C, Montezano A, Schiffrin EL (2007) Increased inflammatory biomarkers in hypertensive type 2 diabetic patients: improvement after angiotensin II type 1 receptor blockade. J Am Soc Hypertens 1:189–199

    PubMed  Google Scholar 

  359. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, McKeown A, Brittain C, Rujescu D, Giegling I, Turck CW, Holsboer F, Bullmore ET, Middleton L, Merlo-Pich E, Alexander RC, Muglia P (2010) Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 5:e9166

    PubMed  Google Scholar 

  360. O’Brien SM, Scully P, Dinan TG (2008) Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry Res 160:256–262

    PubMed  Google Scholar 

  361. Drexhage RC, Padmos RC, de Wit H, Versnel MA, Hooijkaas H, van der Lely AJ, van Beveren N, deRijk RH, Cohen D (2008) Patients with schizophrenia show raised serum levels of the pro-inflammatory chemokine CCL2: association with the metabolic syndrome in patients? Schizophr Res 102:352–355

    PubMed  Google Scholar 

  362. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC (2004) Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 65:940–947

    PubMed  CAS  Google Scholar 

  363. Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC (1995) Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 332:635–641

    PubMed  CAS  Google Scholar 

  364. Morrow DA, Rifai N, Antman EM, Weiner DL, McCabe CH, Cannon CP, Braunwald E (2000) Serum amyloid A predicts early mortality in acute coronary syndromes: a TIMI 11A substudy. J Am Coll Cardiol 35:358–362

    PubMed  CAS  Google Scholar 

  365. Johnson BD, Kip KE, Marroquin OC, Ridker PM, Kelsey SF, Shaw LJ, Pepine CJ, Sharaf B, Bairey Merz CN, Sopko G et al (2004) Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:726–732

    PubMed  CAS  Google Scholar 

  366. Higaki J, Murphy GM Jr, Cordell B (1997) Inhibition of beta-amyloid formation by haloperidol: a possible mechanism for reduced frequency of Alzheimer’s disease pathology in schizophrenia. J Neurochem 68:333–336

    PubMed  CAS  Google Scholar 

  367. Du JL, Liu JF, Men LL, Yao JJ, Sun LP, Sun GH, Song GR, Yang Y, Bai R, Xing Q, Li CC, Sun CK (2009) Effects of five-year intensive multifactorial intervention on the serum amyloid A and macroangiopathy in patients with short-duration type 2 diabetes mellitus. Chin Med J (Engl) 122:2560–2566

    CAS  Google Scholar 

  368. Stettler C, Witt N, Tapp RJ, Thom S, Allemann S, Tillin T, Stanton A, O’Brien E, Poulter N, Gallimore JR, Hughes AD, Chaturvedi N (2009) Serum amyloid A, C-reactive protein, and retinal microvascular changes in hypertensive diabetic and nondiabetic individuals: an Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) substudy. Diabetes Care 32:1098–1100

    PubMed  CAS  Google Scholar 

  369. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603

    PubMed  CAS  Google Scholar 

  370. Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, Chvatchko Y, Tedgui A (2002) Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 88:467–469

    PubMed  CAS  Google Scholar 

  371. Hernesniemi JA, Karhunen PJ, Oksala N, Kähönen M, Levula M, Rontu R, Ilveskoski E, Kajander O, Goebeler S, Viiri LE, Hurme M, Lehtimäki T (2009) Interleukin 18 gene promoter polymorphism: a link between hypertension and pre-hospital sudden cardiac death: the Helsinki Sudden Death Study. Eur Heart J 30:2939–2946

    PubMed  CAS  Google Scholar 

  372. Rabkin SW (2009) The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat Clin Pract Cardiovasc Med 6:192–199

    PubMed  CAS  Google Scholar 

  373. Trøseid M, Seljeflot I, Arnesen H (2010) The role of interleukin-18 in the metabolic syndrome. Cardiovasc Diabetol 9:11

    PubMed  Google Scholar 

  374. Hivert MF, Sun Q, Shrader P, Mantzoros CS, Meigs JB, Hu FB (2009) Circulating IL-18 and the risk of type 2 diabetes in women. Diabetologia 52:2101–2108

    PubMed  CAS  Google Scholar 

  375. Osborn O, Gram H, Zorrilla EP, Conti B, Bartfai T (2008) Insights into the roles of the inflammatory mediators IL-1, IL-18 and PGE2 in obesity and insulin resistance. Swiss Med Wkly 138:665–673

    PubMed  CAS  Google Scholar 

  376. Yu JT, Tan L, Song JH, Sun YP, Chen W, Miao D, Tian Y (2009) Interleukin-18 promoter polymorphisms and risk of late onset Alzheimer’s disease. Brain Res 1253:169–175

    PubMed  CAS  Google Scholar 

  377. Merendino RA, Di Rosa AE, Di Pasquale G, Minciullo PL, Mangraviti C, Costantino A, Ruello A, Gangemi S (2002) Interleukin-18 and CD30 serum levels in patients with moderate-severe depression. Mediators Inflamm 11:265–267

    PubMed  Google Scholar 

  378. Tanaka KF, Shintani F, Fujii Y, Yagi G, Asai M (2000) Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res 96:75–80

    PubMed  CAS  Google Scholar 

  379. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW CAPTURE Investigators (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445

    PubMed  CAS  Google Scholar 

  380. Brennan ML, Penn MS, Lente FV et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    PubMed  CAS  Google Scholar 

  381. Lahdelma L, Jee KJ, Joffe G, Tchoukhine E, Oksanen J, Kaur S, Knuutila S, Andersson LC (2006) Altered expression of myeloperoxidase precursor, myeloid cell nuclear differentiation antigen, Fms-related tyrosine kinase 3 ligand, and antigen CD11A genes in leukocytes of clozapine-treated schizophrenic patients. J Clin Psychopharmacol 26:335–358

    PubMed  Google Scholar 

  382. Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279:1477–1482

    PubMed  CAS  Google Scholar 

  383. Ernst E, Resch KL (1993) Fibrinogen as a cardiovascular risk factor: a meta analysis and review of the literature. Ann Intern Med 118:956–963

    PubMed  CAS  Google Scholar 

  384. Folsom AR, Wu KK, Rasmussen M, Chambless LE, Aleksic N, Nieto FJ (2000) Determinants of population changes in fibrinogen and factor VII over 6 years: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 20:601–606

    PubMed  CAS  Google Scholar 

  385. Lee AJ, Fowkes FG, Lowe GD, Connor JM, Rumley A (1999) Fibrinogen, factor VII and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb Haemost 81:553–560

    PubMed  CAS  Google Scholar 

  386. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpé S (1997) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66:1–11

    PubMed  CAS  Google Scholar 

  387. Vallianou NG, Evangelopoulos AA, Panagiotakos DB, Georgiou AT, Zacharias GA, Vogiatzakis ED, Avgerinos PC (2010) Associations of acute-phase reactants with metabolic syndrome in middle-aged overweight or obese people. Med Sci Monit 16:CR56–CR60

    PubMed  CAS  Google Scholar 

  388. Venugopal SK, Devaraj S, Jialal I (2005) Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens 14:33–37

    PubMed  CAS  Google Scholar 

  389. Devaraj S, Du Clos TW, Jialal I (2005) Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Throm Vasc Biol 25:1359–1363

    CAS  Google Scholar 

  390. Zeller JM, Sullivan BL (1992) C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils. J Leukoc Biol 52:449–455

    PubMed  CAS  Google Scholar 

  391. Venugopal SK, Devaraj S, Jialal I (2003) C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 108:1676–1678

    PubMed  CAS  Google Scholar 

  392. Ikeda U, Takahashi M, Shimada K (2003) C-reactive protein directly inhibits nitric oxide production by cytokine-stimulated vascular smooth muscle cells. J Cardiovasc Pharmacol 42:607–611

    PubMed  CAS  Google Scholar 

  393. Blaschke F, Bruemmer D, Yin F et al (2004) C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 110:579–587

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Das, U.N. (2011). Inflammation. In: Molecular Basis of Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0495-4_3

Download citation

Publish with us

Policies and ethics