Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 10))

Abstract

The feasibility of economic mass production of the selected strain and the development of a stable product are key factors to a successful microbial pest control product. Two phases are distinguished, the development of the production process, and the development of the product, including formulation, packaging and field testing. The critical technical and economic factors are identified and evaluated for the four types of pathogens. Various production systems are reviewed. Bacteria, fungi and entomopathogenic nematodes are generally produced in vitro. Baculoviruses must be produced in vivo. Advantages and disadvantages in terms of costs, manageability and versatility are provided for each production system. The development of a stable product that is able to deliver effective pest control requires a formulation. The four main objectives in formulation are: to stabilize the propagules; to make a user-friendly product; to protect the propagule, once applied; and to minimize risks of exposure to the applicator. Formulation considerations are presented per formulation function as well as per type of pathogen. Field testing is a key phase in the product development which links all steps in the developmental process. It provides information on the efficacy of the selected strain, on the quality of the produced propagules, on the formulation, on the optimal application strategy, on efficacy that is necessary for registration, on compatibility, on the implementation of the product in an IPM system, and on the marketability of the final product. The method of field testing is crucial and should reflect “real world” conditions. A cost price model for biopesticides is provided with cost factors involved from production to product, and from product to market. The model provides a perspective on the makeup of the end-user’s price and all the costs that must be considered to achieve a profitable business. In the conclusion, production and formulation considerations and recommendations for a economically feasible production are presented. Economy of scale, full use of the production capacity, and capacity planning are essential factors to keep the costs low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosin, E., D. Volpe, G. Muñoz, R. San Martin, and A. Crawford, 1997. Effect of culture conditions on spore shelf life of the biocontrol agent. Trichoderma harzianum. World J. Microbiol. Biotechnol. 13: 225–232.

    Article  Google Scholar 

  • Andersch, W., 1992. Production of fungi as crop protection agents. Pflanzenschutz-Nachr. Bayer 45(1): 129–142.

    Google Scholar 

  • Anonymus, 2004. A microscopic formula for success. Agriscience News, Issue 2, 12 January 2004: 1–3.

    Google Scholar 

  • Anonymus, 2006. New O-TEQ formulation for Bayer insecticides. Crop Protection Monthly, February 2006: 17.

    Google Scholar 

  • Anonymus, 2007. Dow unveils “revolutionary pipeline”. Agrow 515, March 9, 2007: 1–3.

    Google Scholar 

  • Arthurs, S.P., L.A. Lacey, and R.W. Behle, 2008. Evaluation of lignins and particle films as solar protectants for the granulovirus of the codling moth, Cydia pomonella. Biocontl. Sci. Technol. 18(7): 829–839.

    Article  Google Scholar 

  • Auld, B.A., 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Prot. 12(6): 477–479.

    Article  Google Scholar 

  • Ballard, J., D.J. Ellis, and C.C. Payne, 2000. The role of formulation additives in increasing the potency of Cydia pomonella granulovirus for codling moth larvae in laboratory and field experiments. Biocontl. Sci. Technol. 10: 627–640.

    Article  Google Scholar 

  • Bartlett, M.C. and S.T. Jaronski, 1988. Mass production of entomogenous fungi for biological control of insects. In: M.N. Burge (ed), Fungi in biological control systems. Manchester University Press, Manchester. pp. 61–85.

    Google Scholar 

  • Bateman, R., 1997. The development of a myco-insecticide for the control of locusts and grasshoppers. Outlook Agric. 26(1): 13–18.

    Google Scholar 

  • Bateman, R.P. and R.T. Alves, 2000. Delivery systems for mycoinsecticides using oil-formulations. Aspects Appl. Biol. 57: 163–170.

    Google Scholar 

  • Bateman, R.P., M. Carey, D. Moore, and C. Prior, 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidity’s. Ann. Appl. Biol. 122: 145–152.

    Article  Google Scholar 

  • Bedding, R.A., 1981. Low cost in vitro mass production of Neoaplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27: 109–114.

    Article  Google Scholar 

  • Bedding, R.A., 1984. Large scale production, storage and transport of the insect-parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Ann. Appl. Biol. 104: 117–120.

    Article  Google Scholar 

  • Bernard, K. and R. Utz, 1993. Production of Bacillus thuringiensis insecticides for experimental and commercial uses. In: P.F. Entwistle, J.S. Cory, M.J. Bailey, S. Higgs (eds), Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New York, NY. pp. 255–267.

    Google Scholar 

  • Black, B.C., L.A. Brennan, P.M. Dierks, and I.E. Gard, 1997. Commercialization of baculoviral insecticides. In: L.K. Miller (ed), The Baculoviruses. Plenum Press, New York. pp. 341–387.

    Google Scholar 

  • Boyetchko, S., E. Pedersen, Z. Punja, and M. Reddy, 1999. Formulations of biopesticides. In: F.R. Hall, J.J. Menn (eds), Biopesticides: use and delivery. Humana Press, Totowa, NJ. pp. 487–508.

    Google Scholar 

  • Bradley, C.A., W.E. Black, R. Kearns, and P. Wood, 1992. Role of production technology in mycoinsecticide development. In: G.F. Leatham (ed), Frontiers in industrial mycology. Chapman & Hall, New York, NY. pp. 160–173.

    Chapter  Google Scholar 

  • Brar, S.K., M. Verma, R.D. Tyagi, and J.R. Valéro, 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41: 323–342.

    Article  CAS  Google Scholar 

  • Burden, J.P., R.S. Hails, J.D. Windass, M.-M. Suner, and J.S. Cory, 2000. Pathogenicity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin Txp-1 in second and fourth instar larvae of Trichoplusia ni. J. Invertebr. Pathol. 75: 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Burges, H.D., 1998. Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Burges, H.D., 2007. Techniques for testing microbials of arthropod pests in greenhouses. In: L.A. Lacey, H.K. Kaya (eds), Field manual of techniques in invertebrate pathology, 2nd edition. Springer, Dordrecht. pp. 463–479.

    Chapter  Google Scholar 

  • Burges, H.D. and K.A. Jones, 1998a. Formulation of bacteria, viruses and protozoa to control insects. In: H.D. Burges (ed), Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht. pp. 33–127.

    Chapter  Google Scholar 

  • Burges, H.D. and K.A. Jones, 1998b. Trends in formulation of microorganisms and future research requirements. In: H.D. Burges (ed), Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht. pp. 310–332.

    Chapter  Google Scholar 

  • Butt, T.M., 2002. Use of entomogenous fungi for the control of insect pests. In: F. Kempken (ed), The Mycota XI, agricultural applications. Springer, Berlin. pp. 111–134.

    Chapter  Google Scholar 

  • Butt, T.M., C. Jackson, and N. Magan, 2001. Introduction-fungal biological control agents: progress, problems and potential. In: T.M. Butt, C. Jackson, N. Magan (eds), Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford. pp. 1–8.

    Chapter  Google Scholar 

  • Butt, T.M., C. Wang, F.A. Shah, and R. Hall, 2006. Degeneration of entomogenous fungi. In: J. Eilenberg, H.M.T. Hokkanen (eds), An ecological and societal approach to biological control. Springer, Dordrecht. pp. 213–226.

    Chapter  Google Scholar 

  • CPL, 2006. Biopesticides 2007. CPL Business Consultants, Wallingford.

    Google Scholar 

  • Castillejos, V., J. Trujillo, L.D. Ortega, J.A. Santizo, J. Cisneros, D.I. Penagos, J. Valle, and T. Williams, 2002. Granular phagostimulant nucleopolyhedrovirus formulations for control of Spodoptera frugiperda in maize. Biol. Control 24: 300–310.

    Article  Google Scholar 

  • Chapple, A.C., R.A. Downer, and R.P. Bateman, 2007. Theory and practice of microbial insecticide application. In: L.A. Lacey, H.K. Kaya (eds), Field manual of techniques in invertebrate pathology, 2nd edition. Springer, Dordrecht. pp. 9–34.

    Chapter  Google Scholar 

  • Charnley, A.K., B. Cobb, and J.M. Clarkson, 1997. Towards the improvement of fungal insecticides. In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 115–126.

    Google Scholar 

  • Cherry, A.J., N.E. Jenkins, G. Heviefo, R. Bateman, and C.J. Lomer, 1999. Operational and economic analysis of a West African pilot-scale production plant for aerial conidia of Metarhizium spp. for use as a mycoinsecticide against locusts and grasshoppers. Biocontl. Sci. Technol. 9: 35–51.

    Article  Google Scholar 

  • Cherry, A.J., M.A. Parnell, D. Grzywacz, and K.A. Jones, 1997. The optimization of in vivo nuclear polyhedrosis virus production in Spodoptera exempta (Walker) and Spodoptera exigua (Hübner). J. Invertebr. Pathol. 70: 50–58.

    Article  Google Scholar 

  • Cherry, A.J., M.A. Parnell, D. Smith, and K.A. Jones, 1994. Oil formulation of insect viruses. IOBC/WPRS Bull. 17(3): 254–257.

    Google Scholar 

  • Copping, L.G., 2009. The manual of biocontrol agents, 4th edition. BCPC Publications, Alton.

    Google Scholar 

  • Copping, L.G. and J.L. Menn, 2000. Review: biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56: 651–676.

    Article  CAS  Google Scholar 

  • Couch, T.L., 2000. Industrial fermentation and formulation of entomopathogenic bacteria. In: J.-F. Charles, A. Delécluse, C. Nielsen-LeRoux (eds), Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordrecht. pp. 297–316.

    Google Scholar 

  • Couch, T.L. and C.M. Ignoffo, 1981. Formulation of insect pathogens. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 621–634.

    Google Scholar 

  • Cox, M.M.J., 2004. Commercial production in insect cells. One company’s perspective. BioProcess International (Supplement), June 2004: 2–5.

    Google Scholar 

  • Curtis, J.E., T.V. Price, and P.M. Ridland, 2003. Initial development of a spray formulation which promotes germination and growth of the fungal entomopathogen Verticillium lecanii (Zimmermann) Viegas (Deuteromycotina: Hyphomycetes) on capsicum leaves (Capsicum annuum grossum Sendt. var. California Wonder) and infection of Myzus persicae Sulzer (Homoptera: Aphididae). Biocontl. Sci. Technol. 13(1): 35–46.

    Google Scholar 

  • De Faria, M.R. and S.P. Wraight, 2007. Mycoinsecticides and mycoararicides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. 43: 237–256.

    Article  CAS  Google Scholar 

  • De la Torre, M., 2003. Challenges for mass production of nematodes in submerged culture. Biotech. Adv. 21: 407–416.

    Article  Google Scholar 

  • Dougherty, E.M., K.P. Guthrie, and M. Shapiro, 1996. Optical brighteners provide baculovirus activity enhancement and UV radiation protection. Biol. Control 7: 71–74.

    Article  Google Scholar 

  • Douthwaite, B., J. Langewald, and J. Harris, 2001. Development and commercialization of the Green Muscle biopesticide. Impact, IITA publication 1. p. 22

    Google Scholar 

  • Durand, A., R. Renaud, J. Maratray, and S. Almanza, 1997. The INRA-Dijon reactors: designs and applications. In: S. Roussos, B.K. Lonsane, M. Raimbault, G. Viniegra-Gonzalez (eds), Advances in solid state fermentation. Proceedings of the 2nd International Symposium on Solid State Fermentation FMS-95, Montpellier, France. Kluwer, Dordrecht. pp. 71–92.

    Google Scholar 

  • Ehlers, R.-U., 1996. Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontl. Sci. Technol. 6: 303–316.

    Article  Google Scholar 

  • Ehlers, R.-U., 2001a. Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 56: 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, R.-U., 2001b. Achievements in research of EPN mass production. In: C.T. Griffin, A.M. Burrell, M.J. Downes, R. Mulder (eds), Developments in entomopathogenic nematodes/bacterial research, EUR 19696-COST 819. European Community Press, Luxembourg. pp. 68–77.

    Google Scholar 

  • Ehlers, R.-U., 2007. Entomopathogenic nematodes: from science to commercial use. In: C. Vincent, M.S. Goettel, G. Lazarovits (eds), Biological control: a global perspective. CAB International, Wallingford. pp. 136–151.

    Chapter  Google Scholar 

  • Ehlers, R.-U., S. Lunau, K. Krasomil-Osterfeld, and K.H. Osterfeld, 1998. Liquid culture of the entomopathogenic nematode-bacterium complex Heterorhabditis megidis/Photorhabdus luminescens. BioControl 43: 77–86.

    Article  Google Scholar 

  • Ehlers, R.-U. and D.I. Shapiro-Ilan, 2005. Mass production. In: P.S. Grewal, R.-U. Ehlers, D.I. Shapiro-Ilan (eds), Nematodes as biocontrol agents. CAB International, Wallingford. pp. 65–78.

    Chapter  Google Scholar 

  • El-Bandary, M.A., 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol. 46(2): 158–170.

    Article  CAS  Google Scholar 

  • Evans, H.F., 1999. Principles of dose acquisition for biopesticides. In: F.R. Hall, J.J. Menn (eds), Biopesticides: use and delivery. Humana Press, Totowa, NY. pp. 553–573.

    Google Scholar 

  • Federici, B.A., 1999. Bacillus thuringiensis in biological control. In: T.S. Bellows, T.W. Fisher (eds), Handbook of biological control. Academic Press, San Diego, CA. pp. 575–593.

    Chapter  Google Scholar 

  • Federici, B.A., 2007. Bacteria as biological control agents for insects: economics, engineering, and environmental safety. In: M. Vurro, J. Gressel (eds), Novel biotechnologies for biocontrol agents enhancement and management. Springer, Dordrecht. pp. 25–51.

    Chapter  Google Scholar 

  • Feng, K.C., B.L. Liu, and Y.M. Tzeng, 2000. Verticillium lecanii spore production in solid-state and liquid-state fermentations. Bioprocess Eng. 23: 25–29.

    Article  CAS  Google Scholar 

  • Feng, K.C., B.L. Liu, and Y.M. Tzeng, 2002. Morphological characterization and germination of aerial and submerged spores of the entomopathogenic fungus Verticillium lecanii. World J. Microbiol. Biotechnol. 18: 217–224.

    Article  Google Scholar 

  • Feng, M.G., T.J. Poprawski, and G.G. Khachatourians, 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontl. Sci. Technol. 4(1): 3–34.

    Article  Google Scholar 

  • Ferron, P., 1981. Pest control by the fungus Beauveria and Metarhizium. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 465–482.

    Google Scholar 

  • Friedman, M.J., 1990. Commercial production and development. In: R. Gaugler, H.K. Kaya (eds), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL. pp. 153–172.

    Google Scholar 

  • Gard, I.E., 1997. Field testing a genetically modified baculovirus. In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 101–114.

    Google Scholar 

  • Gaugler, R., I. Brown, D. Shapiro-Ilan, and A. Atwa, 2002. Automated technology for in vivo mass production of entomopathogenic nematodes. Biol. Control 24: 199–206.

    Article  Google Scholar 

  • Gaugler, R. and R. Han, 2002. Production technology. In: R. Gaugler (ed), Entomopathogenic nematology. CAB International, Wallingford. pp. 289–310.

    Chapter  Google Scholar 

  • Georgis, R., 2002. The biosys experiment: an insider’s perspective. In: R. Gaugler (ed), Entomopathogenic nematology. CAB International, Wallingford. pp. 357–372.

    Chapter  Google Scholar 

  • Georgis, R. and H.K. Kaya, 1998. Formulation of entomopathogenic nematodes. In: H.D. Burges (ed), Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht. pp. 289–308.

    Chapter  Google Scholar 

  • Glare, T.R. and M. O’Callaghan, 2000. Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester.

    Google Scholar 

  • Goettel, M.S. and D.W. Roberts, 1992. Mass production, formulation and field application of entomopathogenic fungi. In: C.J. Lomer, C. Prior (eds), Biological Control of locusts and grasshoppers. CAB International, Wallingford. pp. 230–244.

    Google Scholar 

  • Goodman, C.L., A.H. McIntosh, G.N. El Sayed, J.J. Grasela, and B. Stiles, 2001. Production of selected baculoviruses in newly established lepidopteran cell lines. In Vitro Cell Dev. Biol. – Anim. 37: 374–379.

    PubMed  CAS  Google Scholar 

  • Granados, R.R. and B.A. Federici, 1986. The biology of baculoviruses. Vol. II. Practical application for insect control. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Green, S., S.M. Stewart-Wade, G.J. Boland, M.P. Teshler, and S.H. Liu, 1998. Formulating microorganisms for biological control of weeds. In: G.J. Boland, L.D. Kuykendall (eds), Plant-microbe interactions and biological control. Marcel Dekker, New York, NY. pp. 249–281.

    Google Scholar 

  • Grewal, P.S., 2002. Formulation and application technology. In: R. Gaugler (ed), Entomopathogenic nematology. CAB International, Wallingford. pp. 265–287.

    Chapter  Google Scholar 

  • Grewal, P. and R. Georgis, 1994. Fundamental research on entomopathogenic nematodes: an industrial perspective. Proceedings of the VIth International Colloquium on Invertebrate Pathology and Microbial Control, August 28–September 2, 1994. Montpellier, France. pp. 126–130.

    Google Scholar 

  • Grimm, C., 2001. Economic feasibility of a small-scale production plant for entomopathogenic fungi in Nicaragua. Crop Prot. 20: 623–630.

    Article  Google Scholar 

  • Gröner, A., 1987. Massenproduktion von baculoviren (in vivo und in vitro) und aspekte der kommerzialisierung von viruspräparaten. Med. Fac. Landbouww. Rijksuniv. Gent. 52(2a): 139–145.

    Google Scholar 

  • Grzywacz, D., K.A. Jones, G. Moawas, and A. Cherry, 1998. The in vivo production of Spodoptera littoralis nuclear polyhedrosis virus. J. Virol. Methods 71: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Guillon, M., 1993. Formulation of biopesticides: an industrial view of biological control agents. In: P. Lepoivre (ed), The Proceedings of a Workshop in the EC Programme “Competitiveness of Agriculture and Management of Agricultural Resources” (CAMAR) on Biological Control of Fruit and Foliar Disease, September 16–17, 1993, Gembloux. EC D.-G. Agriculture, Brussels. pp. 99–105.

    Google Scholar 

  • Guillon, M., 1995. Industrial production of insect viruses for biological control: technical aspects and economical interest. Proceedings of the Microbial Control Agents in Sustainable Agriculture, October 18–19, 1995. Italy. pp. 65–72.

    Google Scholar 

  • Guillon, M., 1997. Production of biopesticides: scale up and quality assurance. In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 151–162.

    Google Scholar 

  • Gwynn, R.L., 2006. Progress, issues and constraints in Africa for the development of entomopathogenic nematodes. Paper presented at the Summit Workshop COST 850 “Biocontrol symbiosis”, June 02–05, 2006, Salzau Castle, Kiel, Germany. http://www.cost850.ch. Cited January 22, 2008.

  • Hall, R.A., 1980. Effect of relative humidity on survival of washed and unwashed conidiospores of Verticillium lecanii. Acta Oecologia 1(3): 265–274.

    Google Scholar 

  • Hall, R.A., 1981. The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 483–498.

    Google Scholar 

  • Hallsworth, J.E. and N. Magan, 1994. Improved biological control by changing polyols/trehalose in conidia of entomopathogens. Brighton Crop Protection Conference 1994 – pest and diseases. BCPC Publications, Farnham. pp. 1091–1096.

    Google Scholar 

  • Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2): 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J.G., 1997. Microbial insecticides – an industry perspective. In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 41–50.

    Google Scholar 

  • Hazzard, R.V., B.B. Schult, E. Groden, E.D. Ngollo, and E. Seidlecki, 2003. Evaluation of oils and microbial pathogens for control of lepidopteran pests of sweet corn in New England. J. Econ. Entomol. 96(6): 1653–1661.

    Article  PubMed  CAS  Google Scholar 

  • Hegedus, D.D., M.J. Bidochka, and G. Khachatourians, 1990. Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Appl. Microbiol. Biotechnol. 33: 641–647.

    Article  CAS  Google Scholar 

  • Hirano, S.S. and C.D. Upper, 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus and epiphyte. Microbiol. Mol. Biol. Rev. 64(3): 624–653.

    Article  PubMed  CAS  Google Scholar 

  • Hofstein, R. and B. Fridlender, 1994. Development of production, formulation and delivery systems. Brighton Crop Protection Conference 1994 – pests and diseases. BCPC Publications, Farnham. pp. 1273–1280.

    Google Scholar 

  • Huber, J., 2005. Viruspräparate. In: H. Schmütterer, J. Huber (eds), Natürliche Schädlingsbekämpfungsmittel. Ulmer, Stuttgart. pp. 15–28.

    Google Scholar 

  • Huber, J. and H.G. Miltenburger, 1986. Production of pathogens. In: J.M. Franz (ed), Biological plant and health protection. G. Fisher Verlag, Stuttgart. pp. 168–181.

    Google Scholar 

  • Hunter-Fujita, F.R., P.F. Entwhistle, H.F. Evans, and N.E. Crook, 1998. Insect viruses and pest management. Wiley, Chichester.

    Google Scholar 

  • Hynes, R.K. and S.M. Boyetchko, 2006. Research initiatives in the art and science of biopesticide formulations. Soil Biol. Biochem. 38: 845–849.

    Article  CAS  Google Scholar 

  • Ignoffo, C.M., 1973. Development of a viral insecticide: concept to commercialization. Exp. Parasitol. 33: 380–460.

    Article  PubMed  CAS  Google Scholar 

  • Ignoffo, C.M. and T.L. Couch, 1981. The nucleopolyhedrosis virus of Heliothis species as a microbial insecticide. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 330–362.

    Google Scholar 

  • Ikonomou, L., Y.-J. Schneider, and S.N. Agathos, 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Inceoglu, A.B., S.G. Kamita, A.C. Hinton, Q. Huang, T.F. Severson, K. Kang, and B.D. Hammock, 2001. Recombinant baculoviruses for insect control. Pest Manag. Sci. 57: 981–987.

    Article  PubMed  CAS  Google Scholar 

  • Inglis, G.D., M.S. Goettel, T.M. Butt, and H. Strasser, 2001. Use of hyphomycetous fungi for managing insect pests. In: T.M. Butt, C. Jackson, N. Magan (eds), Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford. pp. 23–69.

    Chapter  Google Scholar 

  • Inglis, G.D., S.T. Jaronski, and S.P. Wraight, 2002. Use of spray oils with entomopathogens. In: G.A.C. Beattie, D.M. Watson, M.L. Stevens, D.J. Race, R.N. Spooner-Hart (eds), Spray Oils Beyond 2000 – Sustainable Pest and Disease Management. Proceedings of the Conference October 25–29, 1999, Sydney, Australia. University of Western Sydney Press, Sydney. pp. 302–312.

    Google Scholar 

  • Jackson, M.A., S. Cliquet, and L.B. Iten, 2003. Media and fermentation process for the rapid production of high concentrations of stable blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Biocontl. Sci. Technol. 13(1): 23–33.

    Article  Google Scholar 

  • Jackson, M.A., C.A. Dunlop, and S.T. Jaronski, 2010. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55: 129–145.

    Article  Google Scholar 

  • Jackson, M.A., S. Erhan, and T.J. Poprawski, 2006. Influence of formulation additives on the desiccation tolerance and storage stability of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Biocontl. Sci. Technol. 16(1): 61–75.

    Article  Google Scholar 

  • Jackson, M.A., M.R. McGuire, L.A. Lacey, and S.P. Wraight, 1997. Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol. Res. 101(1): 35–41.

    Article  Google Scholar 

  • Jackson, T.A., J.F. Pearson, M. O’Callaghan, H.K. Mahanty, and M.J. Willocks, 1992. Pathogen to product-development of Serratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelyta zealandica). In: T.A. Jackson, T.R. Glare (eds), Use of pathogens in scarab pest management. Intercept, Andover. pp. 191–198.

    Google Scholar 

  • Jaronski, S.T., 1986. Commercial development of Deuteromycetous fungi of arthropods: a critical appraisal. In: R.A. Samson, J.M. Vlak, R. Peters (eds), Fundamental and applied aspects of invertebrate pathology. Foundation of the Fourth International Colloquium of Invertebrate Pathology, Wageningen, Netherlands. pp. 653–656.

    Google Scholar 

  • Jenkins, N.E. and M.S. Goettel, 1997. Methods for mass-production of microbial control agents of grasshoppers and locusts. Memoirs Entomol. Soc. Canada 171: 37–48.

    Article  Google Scholar 

  • Jenkins, N.E., G. Heviefo, J. Langewald, A.J. Cherry, and C.J. Lomer, 1998. Development of mass production technology for aerial conidia for use as a mycoinsecticide. Biocont. News Inform. 19(1): 21–31 N.

    Google Scholar 

  • Johnson, V.W., J.F. Pearson, and T.A. Jackson, 2001. Formulation of Serratia entomophila for biological control of grass grubs. N. Z. Plant Prot. 54: 125–127.

    Google Scholar 

  • Jones, K.A. and D. Burges, 1997. Product stability: from experimental preparation to commercial reality. In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 163–171.

    Google Scholar 

  • Jones, K.A. and H.D. Burges, 1998. Technology of formulation and application. In: H.D. Burges (ed), Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht. pp. 7–30.

    Chapter  Google Scholar 

  • Jones, K.A., A.J. Cherry, D. Grzywacz, and D.H. Burges, 1997. Formulation: is it an excusive for poor application? In: H.F. Evans (ed), Microbial Insecticides: Novelty or Necessity? BCPC Symposium Proceedings No. 68, Coventry, April 16–18, 1997. BCPC, Farnham. pp. 173–180.

    Google Scholar 

  • Keller, S., 2000. Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. IOBC/WPRS Bull. 23(8): 67–71.

    Google Scholar 

  • Kiewnick, S., 2001. Advanced fermentation and formulation technologies for fungal antagonists. IOBC/WPRS Bull. 24(1): 77–79.

    Google Scholar 

  • Kiss, L., J.C. Russel, O. Szentiványi, X. Xu, and P. Jeffries, 2004. Biology and biocontrol potential of Ampelomyces mycopararasites, natural antagonists of powdery mildew fungi. Biocontl. Sci. Technol. 14(7): 635–651.

    Article  Google Scholar 

  • Kleespies, R.G. and G. Zimmermann, 1992. Production of blastospores by three strains of Metarhizium anisopliae (Metch) Sorokin in submerged culture. Biocontl. Sci. Technol. 2: 127–135.

    Article  Google Scholar 

  • Kleespies, R.G. and G. Zimmermann, 1994. Viability and virulence of blastospores of Metarhizium anisopliae (Metch) Sorokin after storage in various liquids at different temperatures. Biocontl. Sci. Technol. 4: 309–319.

    Article  Google Scholar 

  • Kleespies, R.G. and G. Zimmermann, 1998. Effect of additives on the production, viability and virulence of blastospores of Metarhizium anisopliae. Biocontl. Sci. Technol. 8: 207–214.

    Article  Google Scholar 

  • Knowles, A., 2006. Adjuvants and additives: 2006 edition. Agrow Reports, London.

    Google Scholar 

  • Koike, M., T. Higashio, A. Komori, K. Akiyama, N. Kishimoto, E. Masuda, M. Sasaki, S. Yoshida, M. Tani, K. Kuramoti, M. Sugimoto, and H. Nagao, 2004. Verticillium lecanii (Lecanicillium spp.) as epiphyte and its application to biological control of arthropod pests and diseases. IOBC/WPRS Bull. 27(8): 41–44.

    Google Scholar 

  • Koppenhöfer, A.M., 2007. Nematodes. In: L.A. Lacey, H.K. Kaya (eds), Field manual of techniques in invertebrate pathology, 2nd edition. Springer, Dordrecht. pp. 249–264.

    Chapter  Google Scholar 

  • Koppenhöfer, A.M. and E.M. Fuzy, 2003. Steinernema scarabaei for the control of white grubs. Biol. Control 28: 47–59.

    Article  Google Scholar 

  • Lacey, L.A. and H.K. Kaya, 2007. Field manual of techniques in invertebrate pathology, 2nd edition. Springer, Dordrecht.

    Book  Google Scholar 

  • Lasa, R., C. Ruiz-Portero, M.D. Alcázar, J.E. Belda, P. Caballero, and T. Williams, 2007. Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol. Control 40: 89–96.

    Article  CAS  Google Scholar 

  • Lello, E.R., M.N. Patel, G.A. Matthews, and D.J. Wright, 1996. Application technology for entomopathogenic nematodes against foliar pests. Crop Prot. 15(6): 567–574.

    Article  Google Scholar 

  • Lewis, F.B., 1981. Control of the gypsy moth by a baculovirus. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 363–378.

    Google Scholar 

  • Lisansky, S.G., 1985. Production and commercialization of pathogens. In: N.W. Hussey, N. Scopes (eds), Biological pest control. The glasshouse experience. Blanford Press, Poole. pp. 210–218.

    Google Scholar 

  • Lisansky, S.G., 1993. Production: the key technology for biopesticides. IMPACT AgBioIndustry, February 1993: 7–13.

    Google Scholar 

  • Lisansky, S.G., R. Quinlan, and G. Tassoni, 1993. The Bacillus thuringiensis production handbook: laboratory methods, manufacturing, formulation, quality control, registration. CPL Press, Newbury.

    Google Scholar 

  • Magan, N., 2001. Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: T.M. Butt, C. Jackson, N. Magan (eds), Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford. pp. 239–251.

    Chapter  Google Scholar 

  • Mayoral, F., M. Benuzzi, and E. Ladurner, 2006. Efficacy of the Beauveria bassiana strain ATCC 74040 (Naturalis) against whiteflies on protected crops. IOBC/WPRS Bull. 29(4): 83–88.

    Google Scholar 

  • McCoy, C.W., 1981. Pest control by the fungus Hirsutella thompsonii. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 499–512.

    Google Scholar 

  • McCoy, C.W., 1996. Pathogens of eriophyoid mites. In: E.E. Lindquist, M.W. Sabelis, J. Bruin (eds), World crop pests. Eriophyoid mites. Their biology, natural enemies and control, Vol. 6. Elsevier, Amsterdam. pp. 481–490.

    Chapter  Google Scholar 

  • McCoy, C.W., A.J. Hill, and R.F. Kanavel, 1975. Large-scale production of the fungal pathogen Hirsutella thompsonii in submerged culture and its formulation for application in the field. Entomophaga 20(3): 229–240.

    Article  Google Scholar 

  • Mendonça, A.F., 1992. Mass production, application and formulation of Metarhizium anisopliae for control of sugarcane froghopper, Mahanarva posticata, in Brasil. In: C.J. Lomer, C. Prior (eds), Biological control of locusts and grasshoppers. CAB International, Wallingford. pp. 239–244.

    Google Scholar 

  • Milner, R.J. and D.M. Hunter, 2001. Recent developments in the use of fungi as biopesticides against locusts and grasshoppers in Australia. J. Orthoptera Res. 10(2): 271–276.

    Article  Google Scholar 

  • Montesinos, E., 2003. Development, registration and commercialization of microbial pesticides for plant protection. Int. Microbiol. 6: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Moscardi, F., 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Ann. Rev. Entomol. 44: 257–289.

    Article  CAS  Google Scholar 

  • Nahar, P.B., S.A. Kulkarni, M.S. Kulye, S.B. Chavan, G. Kulkarni, A. Rajendran, P.D. Yadav, Y. Shouche, and M.V. Deshpande, 2008. Effect of repeated in vitro sub-culturing on the virulence of Metarhizium anisopliae against Helicoverpa armigera (Lepidoptera: Noctuidae). Biocontl. Sci. Technol. 18(4): 337–355.

    Article  Google Scholar 

  • Nicholls, C.I., N. Pérez, L. Vasques, and M.A. Altieri, 2002. The development and status of biologically based integrated pest management in Cuba. Integr. Pest Manag. Rev. 7: 1–16.

    Article  Google Scholar 

  • Patel, A., B. Slaats, J. Hallmann, R. Tilcher, W. Beitzen-Heineke, and K.-D. Vorlop, 2005. Verkapselung von bakteriellen Antagonisten und eines nematophagen Pilzes. Gesunde Pflanzen 57: 30–33.

    Article  Google Scholar 

  • Patel, M.N., M. Stolinski, and D.J. Wright, 1997. Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: observations of four Steinernema species. Parasitology 114: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Pell, J.K., J. Eilenberg, A.E. Hajek, and D.C. Steinkraus, 2002. Biology, ecology and pest management potential of Entomophthorales. In: T.M. Butt, C. Jackson, N. Magan (eds), Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford. pp. 71–153.

    Google Scholar 

  • Perrin, B., 2000. Improving insecticides through encapsulation. Pesticide Outlook, April 2000: 68–71.

    Google Scholar 

  • Piggott, S.J., D.J. Wright, and G.A. Matthews, 2000. Polymeric formulation for the application of entomopathogenic nematodes against foliar pests. Proc. BCPC Conference-Pest and Diseases 2000 1: 1063–1068.

    Google Scholar 

  • Pijlman, G.P., E. van den Born, D.E. Martens, and J.M. Vlak, 2001. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283: 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R.J., 1988. Use of fungi to control insects in glasshouses. In: M.N. Burge (ed), Fungi in biological control systems. Manchester University Press, Manchester. pp. 19–36.

    Google Scholar 

  • Quinlan, R.J. and S.G. Lisansky, 1983. Microbial insecticides. In: H.-J. Rehm, G. Reed (eds), Biotechnology, Vol. 3. Verlag Chemie, Weinheim. pp. 234–254.

    Google Scholar 

  • Reinecke, P., W. Andersch, K. Stenzel and J. Hartwig, 1990. Bio 1020, a new microbial insecticide for use in horticultural crops. Brighton Crop Protection Conference 1990 – Pests and diseases. BCPC Publications, Farnham. pp. 49–54.

    Google Scholar 

  • Rhodes, D.J., 1990. Formulation requirements for biological control agents. Aspects App. Biol. 24: 145–153.

    Google Scholar 

  • Rhodes, D.J., 1996. Economics of baculovirus – insect cell production systems. Cytotechnology 20: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Roditakis, E., I.D. Couzin, K. Balrow, N.R. Franks, and A.K. Charnley, 2000. Improving secondary pick up of insect fungal pathogen conidia by manipulating host behaviour. Ann. Appl. Biol. 137: 329–335.

    Article  Google Scholar 

  • Rombach, M.C., R.M. Aguda, and D.W. Roberts, 1988. Production of Beauveria bassiana (Deuteromycotina: Hyphomycetes) in different liquid media and subsequent conidiation of dry mycelium. Entomophaga 33(2): 315–324.

    Article  Google Scholar 

  • Roussos, S., B.K. Lonsane, M. Raimbault, and G. Viniegra-Gonzalez, 1997. Advances in solid state fermentation. Proceedings of the 2nd International Symposium on Solid State Fermentation FMS-95, Montpellier, France. Kluwer, Dordrecht.

    Google Scholar 

  • Rowe, G.E. and A. Margaritis, 2004. Bioprocess design and economic analysis for the commercial production of environmentally friendly bioinsecticides from Bacilllus thuringiensis HD-1 kurstaki. Biotechnol. Bioeng. 86(4): 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Schroer, S. and R.-U. Ehlers, 2005. Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol. Control 33: 81–86.

    Article  Google Scholar 

  • Schroer, S., D. Sulistyanto, and R.-U. Ehlers, 2005b. Control of Plutella xylostella using polymer-formulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields. J. Appl. Entomol. 129(4): 198–204.

    Article  Google Scholar 

  • Schroer, S., X. Yi, and R.-U. Ehlers, 2005a. Evaluation of adjuvants for foliar application of Steinernema carpocapsae against larvae of the diamondback moth (Plutella xylostella). Nematology 7(1): 37–44.

    Article  CAS  Google Scholar 

  • Shah, F.A., M.A. Ansari, M. Prasad, and T.M. Butt, 2007. Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sub-lethal doses of insecticides in disparate horticultural growing media. Biol. Control 40(2): 246–252.

    Article  CAS  Google Scholar 

  • Shah, F.A., C.S. Wang, and T.M. Butt, 2005. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251: 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, M., 1986. In vivo production of baculoviruses. In: R.R. Granados, B.A. Federici (eds), The biology of baculoviruses. Vol. II. Practical application for insect control. CRC Press, Boca Raton, FL. pp. 31–61.

    Google Scholar 

  • Shapiro-Ilan, D.I. and R. Gaugler, 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. J. Ind. Microbiol. Biotechnol. 28: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Ilan, D.I., D.H. Gouge, S.J. Piggott, and J. Patterson Fife, 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol. Control 38: 124–133.

    Article  Google Scholar 

  • Shieh, T.R., 1989. Industrial production of viral pesticides. Adv. Virus Res. 36: 315–343.

    Article  PubMed  CAS  Google Scholar 

  • Shuler, M.L., H.A. Wood, R.R. Granados, and D.A. Hammer, 1995. Baculovirus expression systems and biopesticides. Wiley-Liss, New York, NY.

    Google Scholar 

  • Skovmand, O., I. Thiéry, and G. Benzon, 2000. Is Bacillus thuringiensis standardisation still possible? In: J.-F. Charles, A. Delécluse, C. Nielsen-LeRoux (eds), Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordrecht. pp. 275–296.

    Google Scholar 

  • Smits, P.H., 1987. Nuclear polyhedrosis virus as biological control agent of Spodoptera exigua. PhD Thesis, Laboratory of Virology, University Wageningen, Wageningen. p. 127.

    Google Scholar 

  • Stock, D., 1997. Do we need adjuvants? Mechanistic studies and implications for future developments. Proceedings of the 50th N.Z. Plant Protection Conference. New Zealand Plant Protection Society, Incorporated, Hastings, New Zealand. pp. 185–190.

    Google Scholar 

  • Stockdale, H. and R.A.J. Priston, 1981. Production of insect viruses in cell culture. In: H.D. Burges (ed), Microbial control of pests and plant diseases 1970–1980. Academic Press, London. pp. 314–328.

    Google Scholar 

  • Strauch, O., I. Niemann, A. Neumann, A.J. Schmidt, A. Peters, and R.-U. Ehlers, 2000. Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45: 483–500.

    Article  Google Scholar 

  • Summers, M.D., 2006. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv. Virus Res. 68: 3–71.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., X. Sun, B. Bai, W. van der Werf, J.M. Vlak, and Z. Hu, 2005. Production of polyhedral inclusion bodies from Helicoverpa armigera larvae infected with wild-type and recombinant HaSNPV. Biocontl. Sci. Technol. 15(4): 353–366.

    Article  Google Scholar 

  • Swanson, D., 1997. Economic feasibility of two technologies for production of a mycopesticide in Madagascar. Memoirs Entomol. Soc. Canada 171: 101–113.

    Article  Google Scholar 

  • Szewczyk, B., L. Hoyos-Carvajal, M. Paluszek, I. Skrzecz, and M. Lobo de Souza, 2006. Baculoviruses – re-emerging biopesticides. Biotech. Adv. 24: 143–160.

    Article  CAS  Google Scholar 

  • Ugine, T.A., S.P. Wraight, and J.P. Sanderson, 2004. Acquisition of lethal doses of Beauveria bassiana conidia by western flower thrips, Frankliniella occidentalis, exposed to foliar spray residues of formulated and unformulated conidia. J. Invertebr. Pathol. 90: 10–23.

    Article  Google Scholar 

  • Van Beek, N. and D.C. Davis, 2007. Baculovirus insecticide production in insect larvae. In: D.W. Murhammer (ed), Baculovirus and insect cell expression protocols. Humana Press, Totowa, NJ. pp. 367–378.

    Chapter  Google Scholar 

  • VanderGheynst, J., H. Scher, H.-Y. Guo, and D. Schulz, 2007. Water-in-oil emulsions that improve the storage and delivery of the biolarvicide Lagenidium giganteum. BioControl 52: 207–229.

    Article  CAS  Google Scholar 

  • Van der Pas, R.K., W.J. Ravensberg, and E. Cryer, 1998. Insect pathogenic fungi for environmentally-friendly pest control in the glasshouse: investigating oil formulations. IOBC/WPRS Bull. 21(4): 129–132.

    Google Scholar 

  • Van Oers, M.M., G.J. Messelink, S. Peters, and J.M. Vlak, 2005. Een nieuw baculovirus van en voor de Turkse mot. Gewasbescherming 36(6): 268–269.

    Google Scholar 

  • Verhaar, M.A., T. Hijwegen, and J.C. Zadoks, 1999. Improvement of the efficacy of Verticillium lecanii used in biocontrol of Sphaerotheca fuliginea by addition of oil formulations. BioControl 44: 73–89.

    Article  CAS  Google Scholar 

  • Vimala Devi, P.S., T. Ravinder, and C. Jaidev, 2005. Cost-effective production of Bacillus thuringiensis by solid state fermentation. J. Invertebr. Pathol. 88: 163–168.

    Article  CAS  Google Scholar 

  • Vlak, J.M., C.D. de Gooijer, J. Tramper, and H.G. Miltenburger, 1996. Insect cell cultures. Fundamental and applied aspects. Kluwer, Dordrecht.

    Google Scholar 

  • Weiss, S.A., B.F. Dunlop, R. Georgis, D.W. Thomas, P.V. Vail, D.F. Hoffmann, and J.S. Manning, 1994. Production of baculoviruses on industrial scale. Proceedings of the XXVIIth Annual Meeting Society Invertebrate Pathology. Montpellier, France. pp. 440–446.

    Google Scholar 

  • Weiss, S.A. and J.L. Vaughn, 1986. Cell culture methods for large-scale propagation of baculoviruses. In: R.R. Granados, B.A. Federici (eds), The biology of baculoviruses. Vol. II. Practical application for insect control. CRC Press, Boca Raton, FL. pp. 63–88.

    Google Scholar 

  • Wilson, M. and E. Ivanova, 2004. Neutral density liquid formulations for nematode-base biopesticides. Biotechnol. Lett. 26: 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  • Wood, H.A. and P.R. Hughes, 1996. Recombinant viral insecticides: delivery of environmental safe and cost-effective products. Entomophaga 41: 361–373.

    Article  Google Scholar 

  • Wraight, S.P. and R.I. Carruthers, 1999. Production, delivery, and use of mycoinsecticides for control of insects pests on field crops. In: F.R. Hall, J.J. Menn (eds), Biopesticides: use and delivery. Humana Press, Totowa, NJ. pp. 233–269.

    Google Scholar 

  • Wraight, S.P., M.A. Jackson, and S.L. de Kock, 2001. Production, stabilization and formulation of fungal biocontrol agents. In: T.M. Butt, C. Jackson, N. Magan (eds), Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford. pp. 253–287.

    Chapter  Google Scholar 

  • Young, S.Y. and W.C. Yearian, 1986. Formulation and application of baculoviruses. In: R.R. Granados, B.F. Federici (eds), The biology of baculoviruses. Vol. II. Practical application for insect control. CRC Press, Boca Raton, FL. pp. 157–180.

    Google Scholar 

  • Ypsilos, I.K. and N. Magan, 2004. Impact of water-stress and washing treatments on production, synthesis and retention of endogenous sugar alcohols and germinability of Metarhizium anisopliae blastospores. Mycol. Res. 208(11): 1337–1345.

    Article  CAS  Google Scholar 

  • Zimmermann, G., 2005. Pilzpräparate. In: H. Schmütterer, J. Huber (eds), Natürliche Schädlingsbekämpfungsmittel. Ulmer, Stuttgart. pp. 87–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem J. Ravensberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ravensberg, W.J. (2011). Mass Production and Product Development of a Microbial Pest Control Agent. In: A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Progress in Biological Control, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0437-4_3

Download citation

Publish with us

Policies and ethics