Skip to main content

Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Multiple mapping conditioning (MMC) is a relatively new addition to the list of models for turbulent combustion that unifies the features of the probability density function, conditional moment closure and mapping closure models. This chapter presents the major concepts and theory of MMC without the detailed derivations which can be found in the cited literature. While the fundamental basis remains the same, MMC ideas have undergone considerable evolution since they were first proposed and the result is a generalised combustion modelling framework which can more transparently and simply incorporate the major turbulence models which have been developed over the past decades including LES. A significant part of this chapter is devoted to a review of the published MMC applications comparing model predictions with DNS and experimental flame databases. Finally, the chapter concludes with a list of some of the advances in MMC methodology that we can expect to see in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, R.S., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Google Scholar 

  2. Bergmann, W., Meier, W., Wolff, D., Stricker, W.: Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl. Phys. B 66, 489–502 (1998)

    Article  Google Scholar 

  3. Bilger, R.W., Saetran, L.R., Krishnamoorthy, L.V.: Reaction in a scalar mixing layer. J. Fluid Mech. 233, 211–242 (1991)

    Article  Google Scholar 

  4. Bilger, R.W.: Advanced laser diagnostics: implications of recent results for advanced combustor models. In R.S.L. Lee, J.H. Whitelaw, and T.S. Wung, editors, Aerothermodynamics in Combustors. Springer-Verlag, Berlin (1993)

    Google Scholar 

  5. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11, 839–862 (2007)

    Article  MATH  Google Scholar 

  6. Cha, C.M., Kosaly, G., Pitsch, H.: Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach. Phys. Fluids 13, 3824–3834 (2001)

    Article  Google Scholar 

  7. Chen, H., Chen, S., Kraichnan, R.H.: Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63, 2657–2660 (1989)

    Article  Google Scholar 

  8. Cleary, M.J., Kronenburg, A.: Multiple mapping conditioning for extinction and reignition in turbulent diffusion flames. Proc. Combust. Inst. 31, 1497–1505 (2007)

    Article  Google Scholar 

  9. Cleary, M.J., Kronenburg, A.: Hybrid multiple mapping conditioning on passive and reactive scalars. Combust. Flame 151, 623–638 (2007)

    Article  Google Scholar 

  10. Cleary, M.J., Klimenko, A.Y.: A generalised multiple mapping conditioning approach for turbulent combustion. Flow Turbul. Combust. 82, 477–491 (2009)

    Article  MATH  Google Scholar 

  11. Cleary, M.J., Klimenko, A.Y., Janicka, J., Pfitzner, M.: A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames. Proc. Combust. Inst. 32, 1499–1507 (2009)

    Article  Google Scholar 

  12. Colluci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MathSciNet  Google Scholar 

  13. Curl, R.L.: Dispersed phase mixing: I. Theory and effects of simple reactors. AIChE J. 9, 175–181 (1963)

    Article  Google Scholar 

  14. Devaud, C.B., Bilger, R.W., Liu, T.: A new method for modeling the conditional scalar dissipation rate. Phys. Fluids 16, 2004–2011 (2004)

    Article  Google Scholar 

  15. Dopazo, C., O’Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1, 1239–1266 (1974).

    Article  MATH  Google Scholar 

  16. Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, United Kingdom (2003)

    Book  Google Scholar 

  17. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2009)

    Article  Google Scholar 

  18. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  19. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar field. J. Nonequil. Thermodyn. 4, 47–66 (1979)

    Article  MATH  Google Scholar 

  20. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  21. Klimenko, A.Y., Pope, S.B.: A model for turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15, 1907–1925 (2003)

    Article  MathSciNet  Google Scholar 

  22. Klimenko, A.Y.: Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models. Phys. Fluids 16, 4754–4757 (2004)

    Article  Google Scholar 

  23. Klimenko, A.Y.: Matching conditional moments in PDF modelling of nonpremixed combustion. Combust. Flame 143, 369–385 (2005)

    Article  Google Scholar 

  24. Klimenko, A.Y.: On simulating scalar transport by mixing between Lagrangian particles. Phys. Fluids 19, 031702 (2007)

    Article  Google Scholar 

  25. Klimenko, A.Y.: Lagrangian particles with mixing. Part 2: sparse-Lagrangian methods in application for turbulent reacting flows. Phys. Fluids 21, 065102 (2009)

    Article  Google Scholar 

  26. Kronenburg, A., Bilger, Kent, J.H.: Second order conditional moment closure for turbulent jet diffusion flames. Proc. Combust. Inst. 27, 1097–1104 (1998)

    Google Scholar 

  27. Kronenburg, A.: Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Phys. Fluids 16, 2640–2648 (2004)

    Article  Google Scholar 

  28. Kronenburg, A., Kostka, M.: Modeling extinction and reignition in turbulent flames. Combust. Flame 143, 342–356 (2005)

    Article  Google Scholar 

  29. Kronenburg, A., Cleary, M.J.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155, 215–231 (2008)

    Article  Google Scholar 

  30. Kuznetsov, V.R., Sabelnikov, V.A.: Turbulence and Combustion. Hemisphere, New York (1989)

    Google Scholar 

  31. Li, J.D., Bilger, R.W.: Measurement and prediction of the conditional variance in a turbulent reactive-scalar mixing layer. Phys. Fluids A 5, 3255–3266 (1993)

    Article  Google Scholar 

  32. Maas, U., Pope, S.B.: Simplifying chemical-kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  33. Mastorakos, E., Bilger, R.W.: Second-order conditional moment closure for the autoignition of flows. Phys. Fluids 10, 1246–1248 (1998)

    Article  Google Scholar 

  34. Meier, W., Prucker, S., Cao, M.-H., Stricker, W.: Characterization of turbulent H2-N2 air jet diffusion flames by single-pulse spontaneous Raman scattering. Combust. Sci. Technol. 118, 293–312 (1996)

    Article  Google Scholar 

  35. Mitarai, S., Riley, J.J., Kosály, G.: A Lagrangian study of scalar diffusion in isotropic turbulence with chemical reaction. Phys. Fluids 15, 3856–3866 (2003)

    Article  Google Scholar 

  36. Mitarai, S., Riley, J.J., Kosály, G.: Testing of mixing models for Monte Carlo probability density function simulations. Phys. Fluids 17, 047101 (2005)

    Article  Google Scholar 

  37. Mortensen, M.: Consistent modeling of scalar mixing for presumed, multiple parameter probability density functions. Phys. Fluids 17, 018106 (2005)

    Article  MathSciNet  Google Scholar 

  38. Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  40. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  41. Pope, S.B.: Mapping closures for turbulent mixing and reaction. Theoret. Comput. Fluid Dynamics 2, 255–270 (1991)

    Article  MATH  Google Scholar 

  42. Pope, S.B.: On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6, 973–985 (1994)

    Article  MATH  Google Scholar 

  43. Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)

    Article  MathSciNet  Google Scholar 

  44. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, United Kingdom (2000)

    MATH  Google Scholar 

  45. Pope, S.B.: Accessed compositions in turbulent reactive flows. Flow Turbul. Combust. 72, 219–243 (2004)

    Article  MATH  Google Scholar 

  46. Pope, S.B., Ren, Z.: Efficient implementation of chemistry in computational combustion. Flow Turbul. Combust. 82, 437–453 (2009)

    Article  MATH  Google Scholar 

  47. Repp, S., Sadiki, A., Schneider, C., Hinz, A., Landenfeld, T., Janicka, J.: Prediction of swirling confined diffusion flame with a Monte Carlo and a presumed-PDF model. Int. J. Heat Mass Trans. 45, 1271–1285 (2002)

    Article  MATH  Google Scholar 

  48. Saetran, L.R., Honnery, D.R., Stårner, S.H., Bilger, R.W.: Turbulent Shear Flows 6. Springer-Verlag, Berlin (1989)

    Google Scholar 

  49. Schneider, Ch., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  50. Sreedhara, S., Huh, K.Y., Ahn, D.H.: Comparison of submodels for conditional velocity and scalar dissipation in CMC simulation of piloted jet and bluff body flames. Combust. Flame 152, 282–286 (2008)

    Article  Google Scholar 

  51. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487–514 (1998)

    Article  Google Scholar 

  52. Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids A 3, 3034–3037 (1991)

    Article  MATH  Google Scholar 

  53. Vaishnavi, P., Kronenburg, A.: Multiple mapping conditioning of velocity in turbulent jet flames. Combust. Flame, to be published 2010.

    Google Scholar 

  54. Vogiatzaki, K., Kronenburg, A., Cleary, M.J., Kent, J.H.: Multiple mapping conditioning of turbulent jet diffusion flames. Proc. Combust. Inst. 32, 1679–1685 (2009)

    Article  Google Scholar 

  55. Vogiatzaki, K., Cleary, M.J., Kronenburg, A., Kent, J.H.: Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning. Phys. Fluids, 21, 025105 (2009)

    Article  Google Scholar 

  56. Wandel, A.P., Klimenko, A.Y.: Testing multiple mapping conditioning mixing for Monte Carlo probability density function simulations. Phys. Fluids, 17, 128105 (2005)

    Article  Google Scholar 

  57. Wandel, A.P., Lindstedt, R.P.: Hybrid binomial Langevin-multiple mapping conditioning modeling of a reacting mixing layer. Phys. Fluids, 21, 015103 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Cleary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cleary, M.J., Klimenko, A.Y. (2011). Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_7

Download citation

Publish with us

Policies and ethics