Skip to main content

Promoting Gut Health with Probiotic Metabolomics

  • Chapter
  • First Online:
Book cover Probiotic Bacteria and Enteric Infections

Abstract

Today metabolomic approaches are aiming at the quest for homeostatic balance which is dependent not only on the host but also on the crucial metabolic interactions with microbial symbionts. Indeed, metabolomics technologies are broadening our knowledge on the roles of the human gut microbiota and how they influence health and disease etiology. While the mechanisms of action of our gut symbionts are only now being unveiled, potential health benefits are being suggested by modulating the microbial functional ecology with the use of probiotics. This chapter discusses latest metabolomics applications to explore mammalian gut microbial metabolic interactions with key emphasis on deciphering bacterial role in maintaining host health balance, as well as preventing and treating metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65(1):351–354

    PubMed  CAS  Google Scholar 

  • Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  Google Scholar 

  • Barbara G, Vallance BA, Collins SM (1997) Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology 113(4):1224–1232

    Article  PubMed  CAS  Google Scholar 

  • Barbara G, De GR, Stanghellini V, Cremon C, Corinaldesi R (2002) A role for inflammation in irritable bowel syndrome? Gut 51(Suppl 1):141–144

    Article  Google Scholar 

  • Beale B (2002) Probiotics: their tiny worlds are under scrutiny. Scientist 16:20–22

    Google Scholar 

  • Bercik P, Verdu EF, Collins SM (2005) Is irritable bowel syndrome a low-grade inflammatory bowel disease? Gastroenterol Clin North Am 34(2):235–239

    Article  PubMed  Google Scholar 

  • Berg RG (1983) Host immune response to antigens of the indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, pp 101–126

    Chapter  Google Scholar 

  • Berg RG, Savage DC (1972) Immunological responses and micro-organisms indigenous to the gastrointestinal tract. Am J Clin Nutr 25:1364–1371

    PubMed  CAS  Google Scholar 

  • Bergonzelli GE, Blum S, Brussow H, Corthesy-Theulaz I (2005) Probiotics as a treatment strategy for gastrointestinal diseases? Digestion 72(1):57–68

    Article  PubMed  Google Scholar 

  • Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5(6):1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, Olsen J (2009) Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res 9:1535–3907

    Google Scholar 

  • Brassart T, Schiffrin EJ (1997) The use of probiotics to reinforce mucosal defence mechanisms. Trends Food Sci Technol 8:321–326

    Article  CAS  Google Scholar 

  • Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81(9):3285–3296

    Article  PubMed  CAS  Google Scholar 

  • Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB (1997) Inflammatorybowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immun 65:3126–3131

    PubMed  CAS  Google Scholar 

  • Campieri M, Gionchetti P (1999) Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative? Gastroenterology 116(5):1246–1249

    Article  PubMed  CAS  Google Scholar 

  • Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361

    Article  PubMed  CAS  Google Scholar 

  • Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171–178

    PubMed  CAS  Google Scholar 

  • Dunne C (2001) Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis 7(2):136–145

    Article  PubMed  CAS  Google Scholar 

  • Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, Long I, Lundstedt T, Trygg J, Wold S (2004) Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Anal Bioanal Chem 380(3):419–429

    Article  PubMed  CAS  Google Scholar 

  • Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170

    PubMed  CAS  Google Scholar 

  • Forestier C, de Champs C, Vatoux C, Joly B (2001) Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 152(2):167–173

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    PubMed  CAS  Google Scholar 

  • Goldberg RM (2005) Advances in the treatment of metastatic colorectal cancer. Oncologist 10(Suppl 3):40–48

    Article  PubMed  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  • Gupta P, Andrew H, Kirschner BS, Guandalini S (2000) Is lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr 31(4):453–457

    Article  PubMed  CAS  Google Scholar 

  • Haapamaki MM, Gronroos JM, Nurmi H, Irjala K, Alanen KA, Nevalainen TJ (1999) Phospholipase A2 in serum and colonic mucosa in ulcerative colitis. Scand J Clin Lab Invest 59(4):279–287

    Article  PubMed  CAS  Google Scholar 

  • Haller D (2006) Intestinal epithelial cell signalling and host-derived negative regulators under chronic inflammation: to be or not to be activated determines the balance towards commensal bacteria. Neurogastroenterol Motil 18(3):184–199

    Article  PubMed  CAS  Google Scholar 

  • Holmes E, Nicholson J (2005) Variation in gut microbiota strongly influences individual rodent phenotypes. Toxicol Sci 87(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann Rev Nutr 22:283–307

    Article  CAS  Google Scholar 

  • Husebye E, Hellstrom PM, Sundler F, Chen J, Midtvedt T (2001) Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 280(3):G368–G380

    PubMed  CAS  Google Scholar 

  • Ibnou-Zekri N, Blum S, Schiffrin EJ, von der Weid T (2003) Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect Immun 71(1):428–436

    Article  PubMed  CAS  Google Scholar 

  • Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H (1993) Lactobacilluscasei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105(6):1643–1650

    PubMed  CAS  Google Scholar 

  • Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, De Simone C, Madsen K (2004) DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126(5):1358–1373

    Article  PubMed  CAS  Google Scholar 

  • Kekkonen RA, Sysi-Aho M, Seppanen-Laakso T, Julkunen I, Vapaatalo H, Oresic M, Korpela R (2008) Effect of probiotic Lactobacillus rhamnosus GG intervention on global serum lipidomic profiles in healthy adults. World J Gastroenterol 14(20):3188–3194

    Article  PubMed  Google Scholar 

  • Khan WI, Collins SM (2006) Gut motor function: immunological control in enteric infection and inflammation. Clin Exp Immunol 143(3):389–397

    Article  PubMed  CAS  Google Scholar 

  • Kinross J, von Roon AC, Penney N, Holmes E, Silk D, Nicholson JK, Darzi A (2009) The gut microbiota as a target for improved surgical outcome and improved patient care. Curr Pharm Des 15(13):1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Lam EK, Tai EK, Koo MW, Wong HP, Wu WK, Yu L, So WH, Woo PC, Cho CH (2007) Enhancement of gastric mucosal integrity by Lactobacillus rhamnosus GG. Life Sci 80(23):2128–2136

    Article  PubMed  CAS  Google Scholar 

  • Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, Young GP (2005) A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr 135(5):996–1001

    PubMed  CAS  Google Scholar 

  • Ley R, Turnbaugh P, Klein S, Gordon J (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517

    Article  PubMed  Google Scholar 

  • MacDonald T, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307(5717):1920–1925

    Article  PubMed  CAS  Google Scholar 

  • Madden JA, Hunter JO (2002) A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics. Br J Nutr 88(Suppl 1):S67–S72

    Article  PubMed  CAS  Google Scholar 

  • Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591

    Article  PubMed  CAS  Google Scholar 

  • Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y (2007) Rapid andnoninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551

    Article  PubMed  CAS  Google Scholar 

  • Marshall B (2003) Helicobacter pylori: past, present and future. Keio J Med 52(2):80–85

    Article  PubMed  CAS  Google Scholar 

  • Martin FP, Verdu EF, Wang Y, Dumas ME, Yap IK, Cloarec O, Bergonzelli GE, Corthesy-Theulaz I, Kochhar S, Holmes E, Lindon JC, Collins SM, Nicholson JK (2006) Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. J Proteome Res 5(9):2185–2193

    Article  PubMed  CAS  Google Scholar 

  • Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, Sprenger N, Fay LB, Kochhar S, van Bladeren P, Holmes E, Nicholson JK (2007a) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Sys Biol 3:112–118

    Google Scholar 

  • Martin FP, Wang Y, Sprenger N, Holmes E, Lindon JC, Kochhar S, Nicholson JK (2007b) Effects of probiotic Lactobacillus paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy. J Proteome Res 6(4):1471–1481

    Article  CAS  Google Scholar 

  • Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, Pere-Trepat E, Rochat F, Cherbut C, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:205

    PubMed  Google Scholar 

  • Martin FP, Wang Y, Yap IK, Sprenger N, Lindon JC, Rezzi S, Kochhar S, Holmes E, Nicholson JK (2009a) Topographical variation in murine intestinal metabolic profiles in relation to microbiome speciation and functional ecological activity. J Proteome Res 8(7):3464–3474

    Article  CAS  Google Scholar 

  • Martin FP, Rezzi S, Pere-Trepat E, Kamlage B, Collino S, Leibold E, Kastler J, Rein D, Fay LB, Kochhar S (2009b) Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res 8(12):5568–5579

    Article  CAS  Google Scholar 

  • Martin FP, Rezzi S, Montoliu I, Philippe D, Tornier L, Messlik A, Holzlwimmer G, Baur P, Quintanilla-Fend L, Loh G, Blaut M, Blum S, Kochhar S, Haller D (2009c) Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice. J Proteome Res 8(5):2376–2387

    Article  CAS  Google Scholar 

  • Martin FP, Sprenger N, Yap IK, Wang Y, Bibiloni R, Rochat F, Rezzi S, Cherbut C, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2009d) Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 8(4):2090–2105

    Article  CAS  Google Scholar 

  • Mercenier A, Grangette C (1999) Immunity and probiotics, nutrition and health collection. John Libbey, Paris, pp 9–44

    Google Scholar 

  • Midgley R, Kerr D (1999) Colorectal cancer. Lancet 353(9150):391–399

    Article  PubMed  CAS  Google Scholar 

  • Minami T, Tojo H, Shinomura Y, Matsuzawa Y, Okamoto M (1994) Increased group II phospholipase A2 in colonic mucosa of patients with Crohn’s disease and ulcerative colitis. Gut 35(11):1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B (2009) Metabolite profiling of faecal water extracts from human colorectal cancer. NMR Biomed 22(3):342–348

    Article  PubMed  CAS  Google Scholar 

  • Montoliu I, Martin FP, Collino S, Rezzi S, Kochhar S (2009) Multivariate modeling strategy for intercompartmental analysis of tissue and plasma 1H NMR spectrotypes. J Proteome Res 8(5):2397–2406

    Article  PubMed  CAS  Google Scholar 

  • Moreno A, Rey M, Montane JM, Alonso J, Arus C (1993) 1H NMR spectroscopy of colon tumors and normal mucosal biopsies; elevated taurine levels and reduced polyethyleneglycol absorption in tumors may have diagnostic significance. NMR Biomed 6(2):111–118

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Sadler PJ, Bales JR, Juul SM, MacLeod AF, Sonksen PH (1984) Monitoring metabolic disease by proton NMR of urine. Lancet 2(8405):751–752

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe SJ (2008) Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol 24:51–58

    Article  PubMed  Google Scholar 

  • Pereira DI, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37(4):259–281

    Article  PubMed  CAS  Google Scholar 

  • Prioult G, Fliss I, Pecquet S (2003) Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice. Clin Diagn Lab Immunol 10(5):787–792

    PubMed  CAS  Google Scholar 

  • Reid G (2001) Can bacterial interference prevent infection? Trends Microbiol 9:424–428

    Article  PubMed  CAS  Google Scholar 

  • Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6(2):513–525

    Article  PubMed  CAS  Google Scholar 

  • Rezzi S, Vera FA, Martin FP, Wang S, Lawler D, Kochhar S (2008) Automated SPE-RP-HPLC fractionation of biofluids combined to off-line NMR spectroscopy for biomarker identification in metabonomics. J Chromatogr B Anal Technol Biomed Life Sci 871(2):271–278

    Article  CAS  Google Scholar 

  • Robertson MD, Parkes M, Warren BF, Ferguson DJ, Jackson KG, Jewell DP, Frayn KN (2003) Mobilisation of enterocyte fat stores by oral glucose in humans. Gut 52:834–839

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez LA, Ruigomez A (1999) Increased risk of irritable bowel syndrome after bacterial gastroenteritis: cohort study. Br Med J 318(7183):565–566

    Article  CAS  Google Scholar 

  • Saric J, Wang Y, Li J, Coen M, Utzinger J, Marchesi JR, Keiser J, Veselkov K, Lindon JC, Nicholson JK, Holmes E (2008) Species variation in the faecal metabolome gives insight into differential gastrointestinal function. J Proteome Res 7(1):352–360

    Article  PubMed  CAS  Google Scholar 

  • Sarker SA, Sultana S, Fuchs GJ, Alam NH, Azim T, Brussow H, Hammarstrom L (2005) Lactobacillus paracasei strain ST11 has no effect on rotavirus but ameliorates the outcome of nonrotavirus diarrhoea in children from Bangladesh. Pediatrics 116(2):e221–e228

    Article  PubMed  Google Scholar 

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126(6):1620–1633

    Article  PubMed  Google Scholar 

  • Shahani KM, Ayebo AD (1980) Role of dietary lactobacilli in gastrointestinal microecology. Am J Clin Nutr 33(Suppl 11):2448–2457

    PubMed  CAS  Google Scholar 

  • Tannock GW (2005) Commentary: Remembrance of microbes past. Int J Epidemiol 34(1):13–15

    Article  PubMed  Google Scholar 

  • Verdu EF, Bercik P, Bergonzelli GE, Huang XX, Blennerhasset P, Rochat F, Fiaux M, Mansourian R, Corthesy-Theulaz I, Collins SM (2004) Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology 127(3):826–837

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Holmes E, Comelli EM, Fotopoulos G, Dorta G, Tang H, Rantalainen MJ, Lindon JC, Corthesy-Theulaz IE, Fay LB, Kochhar S, Nicholson JK (2007) Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning (1)H NMR spectroscopy. J Proteome Res 6(10):3944–3951

    Article  PubMed  CAS  Google Scholar 

  • Warren JR (2000) Gastric pathology associated with Helicobacter pylori. Gastroenterol Clin North Am 29(3):705–751

    Article  PubMed  CAS  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Google Scholar 

  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton RS, Fulton LA, Clifton SW, Wilson RK, Knight RD, Gordon JI (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156

    Article  PubMed  Google Scholar 

  • Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575

    Article  PubMed  CAS  Google Scholar 

  • Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E (2008) Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7(9):3718–3728

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Rezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Collino, S., Martin, FP.J., Kochhar, S., Rezzi, S. (2011). Promoting Gut Health with Probiotic Metabolomics. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_8

Download citation

Publish with us

Policies and ethics