Skip to main content

Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP Hole 1256D)

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Oceanic crust is the carrier of the marine magnetic anomalies and is therefore a valuable archive of geomagnetic information. ODP/IODP Hole 1256D was the first to sample an entire sequence of oceanic crust down to the gabbro. We studied the vertical variation of magnetic remanence carriers by means of scanning electron microscopy, microanalysis and rock magnetic measurements. The extrusive layer contains dendritic, low-temperature oxidized titanomagnetites (TMs), i.e. titanomaghemite, with initial compositions close to values previously reported for mid-ocean ridge basalts (MORB). The degree of low-temperature oxidation (maghemitisation) remains fairly constant across the extrusives. We explain the observed increase in Curie temperature with depth by submicron inversion of titanomaghemite to intergrowths of titanomagnetite and nonmagnetic phases, where the Ti-content of titanomagnetite is decreasing with depth. In the underlying sheeted dikes, TMs are again the primary magnetic mineral. Due to slower cooling, they are in most cases oxy-exsolved into lamellar intergrowths of Ti-poor TMs and ilmenite. The magnetominerals are altered to a much higher degree than in the extrusives. In the gabbroic part of the section, TMs reach sizes up to several mm, although the magnetic grain size remains consistently in the pseudo-single-domain range because of grain subdivision by exsolution lamellae. The extrusives carry a thermoremanent magnetisation (TRM), retaining the primary paleomagnetic direction but with a reduced remanence intensity. The sheeted dikes hold a thermo-chemical remanent magnetization (TCRM) or secondary TRM acquired during hydrothermal alteration, whereas the underlying gabbro acquired a TCRM significantly after emplacement due to slow cooling at this depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton GD, Petronotis KE, Cape CD, Ilg SR, Gordon RG, Bryan PC (1996) A test of the geocentric axial dipole hypothesis from an analysis of the skewness of the central marine magnetic anomaly. Earth Planet Sci Lett 144:337–346

    Article  Google Scholar 

  • Arkani-Hamed J (1988) Remanent magnetization of the oceanic upper mantle. Geophys Res Lett 15:48–51

    Article  Google Scholar 

  • Arkani-Hamed J (1991) Thermoremanent magnetization of oceanic lithosphere inferred from a thermal evolution model: implications for the source of marine magnetic anomalies. Tectonophysics 192:81–96

    Article  Google Scholar 

  • Bleil U, Petersen N (1983) Variation in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301:384–388

    Article  Google Scholar 

  • Carlut J, Kent DV (2002) Grain-size-dependent paleointensity results from very recent mid-oceanic ridge basalts. J Geophys Res. doi:10.1029/2001JB000439

    Google Scholar 

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planetary Inter 13:260–267

    Article  Google Scholar 

  • Doubrovine PV, Tarduno JA (2004) Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet Sci Lett 222:959–969

    Article  Google Scholar 

  • Doubrovine PV, Tarduno JA (2006) Alteration and self-reversal in oceanic basalts. J Geophys Res. doi:10.1029/2006JB004468

    Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (M RS/M S versus H CR/H C) 1. theoretical curves and tests using titanomagnetite data. J Geophys Res. doi:10.1029/2001JB000486

    Google Scholar 

  • Dyment J, Arkani-Hamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J R Astron Soc 129:691–701.

    Google Scholar 

  • Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 455–507

    Google Scholar 

  • Gee J, Schneider DA, Kent DV (1996) Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth Planet Sci Lett 144:327–335

    Article  Google Scholar 

  • Gee JS, Cande SC, Hildebrand JA, Donnelly K, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408:827–832

    Article  Google Scholar 

  • Johnson HP, Pariso JE (1993) Variations in oceanic crustal magnetization – systematic changes in the last 160 million years. J Geophys Res 98:435–445

    Article  Google Scholar 

  • Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881

    Article  Google Scholar 

  • Kent DV, Gee J (1994) Grain size-dependent alteration and the magnetization of oceanic basalts. Science 265:1561–1563

    Article  Google Scholar 

  • Koepke J, Christie DM, Dziony W, Holtz F, Lattard D, Maclennan J, Park S, Scheibner B, Yamasaki T, Yamazaki S (2008) Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem Geophys Geosyst. doi:10.1029/2008GC001939

    Google Scholar 

  • Krása D, Matzka J (2007) Inversion of titanomaghemite in oceanic basalt during heating. Phys Earth Planetary Inter 160:169–179

    Article  Google Scholar 

  • Laverne C, Grauby O, Alt JC, Bohn M (2006) Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: the transition from low-temperature to hydrothermal alteration. Geochem Geophys Geosyst. doi:10.1029/2005GC001180

    Google Scholar 

  • Matzka J, Krása D (2007) Oceanic basalt continuous thermal demagnetization curves. Geophys J Int 169:941–950

    Article  Google Scholar 

  • Matzka J, Krása D, Kunzmann T, Schult A, Petersen N (2003) Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth Planet Sci Lett 206:541–553

    Article  Google Scholar 

  • Petersen N, Eisenach P, Bleil U (1979) Low temperature alteration of the magnetic minerals in ocean floor basalts. In: Talwani M, Harrison CGA, Hayes D (eds) Deep drilling results in the atlantic ocean: ocean crust. American Geophysical Union, Washington, DC, pp 169–209

    Google Scholar 

  • Petersen N, Vali H (1987) Observation of shrinkage cracks in ocean floor titanomagnetites. Phys Earth Planetary Inter 46:197–205

    Article  Google Scholar 

  • Petronotis KE, Gordon RG, Acton GD (1992) Determining paleomagnetic poles and anomalous skewness from marine magnetic anomaly skewness data from a single plate. Geophys J Int 109:209–224

    Article  Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Readman PW, O’Reilly W (1970) The synthesis and inversion of non-stoichiometric titanomagnetites. Phys Earth Planetary Inter 4:121–128

    Article  Google Scholar 

  • Readman PW, O’Reilly W (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti, □)3O4. J Geomagnetism Geoelectricity 24:69–90

    Google Scholar 

  • Schneider DA (1988) An estimate of the long-term non-dipole field from marine magnetic-anomalies. Geophys Res Lett 15:1105–1108

    Article  Google Scholar 

  • Smith PPK (1979) Identification of single-domain titanomagnetite particles by means of transmission electron-microscopy. Can J Earth Sci 16:375–379

    Article  Google Scholar 

  • Smith GM, Banerjee SK (1986) Magnetic-structure of the upper kilometer of the marine crust at deep-sea drilling project Hole-504b, Eastern Pacific-Ocean. J Geophys Res 91:337–354

    Google Scholar 

  • Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, the Expedition 309/312 Scientists (2006) Proceedings of IODP, vol 309/312. Integrated Ocean Drilling Program Management International, Inc., Washington, DC

    Google Scholar 

  • Tivey MA, Tucholke BE (1998) Magnetization of 0–29 Ma ocean crust on the Mid-Atlantic Ridge, 25 degrees 30’ to 27 degrees 10’ N. J Geophys Res 103:17807–17826

    Article  Google Scholar 

  • Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949

    Article  Google Scholar 

  • Wang D, R. Van der Voo, Peacor DR (2006) Low-temperature alteration and magnetic changes of variably altered pillow basalts. Geophys J Int 164:25–35

    Article  Google Scholar 

  • Wilson DS, Teagle DAH, Acton GD, the Shipboard Scientific Party (2003) An in situ section of upper oceanic crust formed by superfast seafloor spreading at site 1256. Proceedings of ODP, initial Reports, vol 206. Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Wilson DS, Teagle DAH, Alt JC, Banerjee NR, Umino S, Miyashita S, Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Christie DM, Coggon RM, Cooper KM, Cordier C, Crispini L, Durand SR, Einaudi F, Galli L, Gao YJ, Geldmacher J, Gilbert LA, Hayman NW, Herrero-Bervera E, Hirano N, Holter S, Ingle S, Jiang SJ, Kalberkamp U, Kerneklian M, Koepke J, Laverne C, Vasquez HLL, Maclennan J, Morgan S, Neo N, Nichols HJ, Park SH, Reichow MK, Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE, Swift SA, Tartarotti P, Tikku AA, Tominaga M, Veloso EA, Yamasaki T, Yamazaki S, Ziegler C (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020

    Article  Google Scholar 

  • Xu WX, Peacor DR, Dollase WA, Van der Voo R, Beaubouef R (1997) Transformation of titanomagnetite to titanomaghemite: a slow, two-step, oxidation-ordering process in MORE. Am Mineral 82:1101–1110

    Google Scholar 

  • Zhou WM, Peacor DR, Van der Voo R, Mansfield JF (1999a) Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by transmission electron microscopy. J Geophys Res 104:17689–17702

    Article  Google Scholar 

  • Zhou WM, Van der Voo R, Peacor DR (1999b) Preservation of pristine titanomagnetite in older ocean-floor basalts and its significance for paleointensity studies. Geology 27:1043–1046

    Article  Google Scholar 

  • Zhou WM, Van der Voo R, Peacor DR, Wang DM, Zhang YX (2001) Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: a gradual process with implications for marine magnetic anomaly amplitudes. J Geophys Res 106:6409–6421

    Article  Google Scholar 

  • Zhou WM, Van der Voo R, Peacor DR, Zhang YX (2000) Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet Sci Lett 179:9–20

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples and data provided by the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP). Funding for this research was provided by the National Science Foundation (NSF) through its support of ODP, IODP, and the United States Science Support Program (USSSP) and through NSF grants JOI-T309A4, OCE-0727764, and EAR-IF-0710571 to Herrero-Bervera, and a USSSP Post-Expedition Activity Award and NSF grant OCE-0727576 to Acton. Additional financial support to E. H-B was provided by SOEST-HIGP. D. K. was funded by a Royal Society of Edinburgh BP Trust Research Fellowship. The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Research Council Executive Agency. We are very grateful to the reviewers of this chapter for their very constructive criticisms particularly those of Professor Nikolai Petersen. This is a SOEST contribution number 8147 and HIGP contribution number 1890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krása .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Krása, D., Herrero-Bervera, E., Acton, G., Rodriguez, S. (2011). Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP Hole 1256D). In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_12

Download citation

Publish with us

Policies and ethics