Skip to main content

Role of CXC Chemokines and Receptors in Liver Metastasis – Impact on Liver Resection-Induced Engraftment and Tumor Growth

  • Chapter
  • First Online:
Liver Metastasis: Biology and Clinical Management

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

  • 1201 Accesses

Abstract

Chemokines are inflammatory cytokines that stimulate the migration of distinct subsets of cells including tumor cells. The chemokines MIP (macrophage inflammatory protein)-2 and SDF (stromal cell-derived factor)-1 that are both members of the CXC chemokine superfamily have an important impact on tumor progression and metastasis of colorectal cancer. Our experimental studies demonstrate that chemotactic signaling does not only contribute to the metastatic spread of tumor cells, but is also essential for tumor engraftment and progression. These studies on chemokines have exceeded the previous expectations in elucidating homing mechanisms directing colorectal cancer metastasis and have given us a deeper insight into the mechanisms that regulate tumor growth. Chemotactic signaling is necessary for a variety of physiological and pathological processes including inflammatory response, leukocyte traffic, angiogenesis and programmed cell death. Therefore, it seems very unlikely that targeting one single chemokine will be sufficient as a single modality therapy for cancer treatment. The complex network of chemokines and chemokine receptors could provide compensatory mechanisms to overcome permanent deprivation of a specific chemokine, as we already demonstrated for MIP-2 and SDF-1. Our findings thus far encourage further investigation. The chemotactic signaling in cancer is a new and promising target/perspective for anti-tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ENA-78:

epithelial neutrophil-activating protein-78

GCP-2:

granulocyte chemotactic protein-2

GFP:

green fluorescent protein

GRO-α/-β/-γ:

growth-related oncogene-α/-β/-γ

HCC:

hepatocellular carcinoma

IL-8:

interleukin-8

I-TAC:

interferon-inducible T-cell alpha chemoattractant

MCP-1:

monocyte chemotactic protein-1

MIP-2:

macrophage inflammatory protein-2

PF-4:

platelet factor-4

SDF-1:

stromal cell-derived factor-1

TGF-α/-β:

transforming growth factor-α/-β

TNF-α:

tumour necrosis factor-α

VEGF:

vascular endothelial growth factor

References

  1. Abdalla EK, Vauthey JN, Ellis LM, Ellis V, Pollock R, Broglio KR, Hess K, Curley SA (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239:818–825

    PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    PubMed  Google Scholar 

  3. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244:108–113

    Google Scholar 

  4. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    PubMed  CAS  Google Scholar 

  5. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC (1998) Multistep nature of metastatic inefficiency. AJP 153:865–873

    PubMed  CAS  Google Scholar 

  6. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    PubMed  CAS  Google Scholar 

  7. Paget S (1998) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metast Rev 8:98–101

    Google Scholar 

  8. Choti MA, Sitzmann JV, Tiburi MF, Sumetchotimetha W, Rangsin R, Schulick RD, Lillemoe KD, Yeo CJ, Cameron JL (2002) Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 235:759–766

    PubMed  Google Scholar 

  9. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230:309–318

    PubMed  CAS  Google Scholar 

  10. Yamamoto J, Shimada K, Kosuge T, Yamasaki S, Sakamoto M, Fukuda H (1999) Factors influencing survival of patients undergoing hepatectomy for colorectal metastases. Br J Surg 86:332–337

    PubMed  CAS  Google Scholar 

  11. DeMatteo RP, Palese C, Jarnagin WR, Sun RL, Blumgart LH, Fong Y (2000) Anatomic segmental hepatic resection is superior to wedge resection as an oncologic operation for colorectal liver metastases. J Gastrointest Surg 4:178–184

    PubMed  CAS  Google Scholar 

  12. Chang YC (2004) Low mortality major hepatectomy. Hepatogastroenterology 51:1766–1770

    PubMed  Google Scholar 

  13. Imamura H, Seyama Y, Kokudo N, Maema A, Sugawara Y, Sano K, Takayama T, Makuuchi M (2003) One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg 138:1198–1206

    PubMed  Google Scholar 

  14. Jarnagin WR, Gonen M, Fong Y, DeMatteo RP, Ben-Porat L, Little S, Corvera C, Weber S, Blumgart LH (2002) Improvement in perioperative outcome after hepatic resection: analysis of 1803 consecutive cases over the past decade. Ann Surg 236:397–406

    PubMed  Google Scholar 

  15. Seyama Y, Kubota K, Sano K, Noie T, Takayama T, Kosuge T, Makuuchi M (2003) Long-term outcome of extended hepatectomy for hilar bile duct cancer with no mortality and high survival rate. Ann Surg 238:73–83

    PubMed  Google Scholar 

  16. Abdalla EK, Ribero D, Pawlik TM, Zorzi D, Curley SA, Muratore A, Andres A, Mentha G, Capussotti L, Vauthey JN (2007) Resection of hepatic colorectal metastases involving the caudate lobe: perioperative outcome and survival. J Gastrointest Surg 11:66–72

    PubMed  Google Scholar 

  17. Lang BH, Poon RT, Fan ST, Wong J (2003) Perioperative and long-term outcome of major hepatic resection for small solitary hepatocellular carcinoma in patients with cirrhosis. Arch Surg 138:1207–1213

    PubMed  Google Scholar 

  18. Stewart GD, O’Suilleabhain CB, Madhavan KK, Wigmore SJ, Parks RW, Garden OJ (2004) The extent of resection influences outcome following hepatectomy for colorectal liver metastases. Eur J Surg Oncol 30:370–376

    PubMed  CAS  Google Scholar 

  19. Elias D, Liberale G, Vernerey D, Pocard M, Ducreux M, Boige V, Malka D, Pignon JP, Lasser P (2005) Hepatic and extrahepatic colorectal metastases: when resectable, their localization does not matter, but their total number has a prognostic effect. Ann Surg Oncol 12:900–909

    PubMed  Google Scholar 

  20. Dong C, Slattery MJ, Liang S, Peng HH (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159

    PubMed  Google Scholar 

  21. Noonan DM, Benelli R, Albini A (2007) Angiogenesis and cancer prevention: a vision. Recent Results Cancer Res 174:219–224

    PubMed  CAS  Google Scholar 

  22. Gomperts BN, Strieter RM (2006) Chemokine-directed metastasis. Contrib Microbiol 13:170–190

    PubMed  CAS  Google Scholar 

  23. Rubie C, Oliveira V, Kempf K, Wagner M, Tilton B, Rau B, Kruse B, Konig J, Schilling MK (2006) Involvement of chemokine receptor CCR6 in colorectal cancer metastasis. Tumour Biol 27:166–174

    PubMed  CAS  Google Scholar 

  24. Zlotnik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14:181–185

    PubMed  CAS  Google Scholar 

  25. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    PubMed  CAS  Google Scholar 

  26. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    PubMed  CAS  Google Scholar 

  27. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    PubMed  CAS  Google Scholar 

  28. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613

    PubMed  CAS  Google Scholar 

  29. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    PubMed  CAS  Google Scholar 

  30. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  31. Li A, Varney ML, Singh RK (2004) Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype. Clin Exp Metastasis 21:571–579

    PubMed  CAS  Google Scholar 

  32. Balkwill F (2003) Chemokine biology in cancer. Semin Immunol 15:49–55

    PubMed  CAS  Google Scholar 

  33. Rollins BJ (1997) Chemokines. Blood 90:909–928

    CAS  Google Scholar 

  34. Homey B, Müller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2:175–184

    PubMed  CAS  Google Scholar 

  35. Kassis J, Lauffenburger DA, Turner T, Wells A (2001) Tumor invasion as dysregulated cell motility. Semin Cancer Biol 11:105–117

    PubMed  CAS  Google Scholar 

  36. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  Google Scholar 

  37. Campbell JJ, Bowman EP, Murphy K, Youngman KR, Siani MA, Thompson DA, Wu L, Zlotnik A, Butcher EC (1998) 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 141:1053–1059

    PubMed  CAS  Google Scholar 

  38. Yoshida R, Imai T, Hieshima K, Kusuda J, Baba M, Kitaura M, Nishimura M, Kakizaki M, Nomiyama H, Yoshie O (1997) Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J Biol Chem 272:13803–13809

    CAS  Google Scholar 

  39. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, Forster R (2005) Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer 116:726–733

    PubMed  Google Scholar 

  40. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Mori M (2002) Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62:2937–2941

    PubMed  CAS  Google Scholar 

  41. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63:3833–3839

    PubMed  CAS  Google Scholar 

  42. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    PubMed  CAS  Google Scholar 

  43. Shimizu Y, Murata H, Kashii Y, Hirano K, Kunitani H, Higuchi K, Watanabe A (2001) CC-chemokine receptor 6 and its ligand macrophage inflammatory protein 3alpha might be involved in the amplification of local necroinflammatory response in the liver. Hepatology 34:311–319

    PubMed  CAS  Google Scholar 

  44. Rubie C, Frick VO, Wagner M, Rau B, Weber C, Kruse B, Kempf K, Tilton B, Konig J, Schilling M (2006) Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma. Scand J Immunol 63:468–477

    PubMed  CAS  Google Scholar 

  45. Liu Y, Poon RT, Hughes J, Feng X, Yu WC, Fan ST (2005) Chemokine receptors support infiltration of lymphocyte subpopulations in human hepatocellular carcinoma. Clin Immunol 114:174–182

    PubMed  CAS  Google Scholar 

  46. Rubie C, Frick VO, Wagner M, Weber C, Kruse B, Kempf K, König J, Rau B, Schilling M (2006) Chemokine expression in hepatocellular carcinoma versus colorectal liver metastases. World J Gastroenterol 12:6627–6633

    PubMed  CAS  Google Scholar 

  47. Rubie C, Frick VO, Wagner M, Schuld J, Gräber S, Brittner B, Bohle RM, Schilling MK (2008) ELR+ CXC chemokine expression in benign and malignant colorectal conditions. BMC Cancer 8:178

    PubMed  Google Scholar 

  48. Rubie C, Kollmar O, Frick VO, Wagner M, Brittner B, Gräber S, Schilling MK (2008) Differential CXC receptor expression in colorectal carcinomas. Scand J Immunol 68:635–644

    PubMed  CAS  Google Scholar 

  49. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    PubMed  CAS  Google Scholar 

  50. Luca M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M (1997) Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151:1105–1113

    PubMed  CAS  Google Scholar 

  51. Ueda T, Sakabe T, Oka M, Maeda Y, Nishida M, Murakami F, Maekawa T (2000) Levels of interleukin (IL)-6, IL-8, and IL-1 receptor antagonist in the hepatic vein following liver surgery. Hepatogastroenterology 47:1048–1051

    PubMed  CAS  Google Scholar 

  52. Miller LJ, Kurtzman SH, Wang Y, Anderson KH, Lindquist RR, Kreutzer DL (1998) Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 18:77–81

    PubMed  CAS  Google Scholar 

  53. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    PubMed  CAS  Google Scholar 

  54. Brew R, Erikson JS, West DC, Kinsella AR, Slavin J, Christmas SE (2000) Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine 12:78–85

    PubMed  CAS  Google Scholar 

  55. Takeda A, Stoeltzing O, Ahmad SA, Reinmuth N, Liu W, Parikh A, Fan F, Akagi M, Ellis LM (2002) Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol 9:610–616

    PubMed  Google Scholar 

  56. Haraguchi M, Komuta K, Akashi A, Matsuzaki S, Furui J, Kanematsu T (2002) Elevated IL-8 levels in the drainage vein of resectable Dukes’ C colorectal cancer indicate high risk for developing hepatic metastasis. Oncol Rep 9:159–165

    PubMed  Google Scholar 

  57. Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802

    PubMed  CAS  Google Scholar 

  58. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161:125–134

    PubMed  CAS  Google Scholar 

  59. Strieter RM, Polverini PJ, Arenberg DA, Walz A, Opdenakker G, Van Damme J, Kunkel SL (1995) Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 57:752–762

    PubMed  CAS  Google Scholar 

  60. Balbay MD, Pettaway CA, Kuniyasu H, Inoue K, Ramirez E, Li E, Fidler IJ, Dinney CP (1999) Highly metastatic human prostate cancer growing within the prostate of athymic mice overexpresses vascular endothelial growth factor. Clin Cancer Res 5:783–789

    PubMed  CAS  Google Scholar 

  61. Kassim SK, El-Salahy EM, Fayed ST, Helal SA, Helal T, Azzam Eel-D, Khalifa A (2004) Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin Biochem 37:363–369

    PubMed  CAS  Google Scholar 

  62. Lee LF, Hellendall RP, Wang Y, Haskill JS, Mukaida N, Matsushima K, Ting JP (2000) IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J Immunol 164:2769–2775

    PubMed  CAS  Google Scholar 

  63. Ueda T, Shimada E, Urakawa T (1994) Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis. J Gastroenterol 29:423–429

    PubMed  CAS  Google Scholar 

  64. Reisser D, Lejeune P, Lagadec P, Onier N, Dasilva C, Lindley I, Jeannin JF (1994) Interleukin-8 antitumor effect is associated with a local infiltration but not with a systemic activation of T lymphocytes. Anticancer Res 14:977–979

    PubMed  CAS  Google Scholar 

  65. Rubie C, Oliveira-Frick V, Pfeil S, Wagner M, Kollmar O, Kopp B, Gräber S, Rau B, Schilling MK (2007) Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer. World J Gastroenterol 13:4996–5002

    PubMed  CAS  Google Scholar 

  66. Mosher B, Dean R, Harkema J, Remick D, Palma J, Crockett E (2001) Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res 99:201–210

    PubMed  CAS  Google Scholar 

  67. Ness TL, Hogaboam CM, Strieter RM, Kunkel SL (2003) Immunomodulatory role of CXCR2 during experimental septic peritonitis. J Immunol 171:3775–3784

    PubMed  CAS  Google Scholar 

  68. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617–648

    PubMed  CAS  Google Scholar 

  69. Saijo Y, Tanaka M, Miki M, Usui K, Suzuki T, Maemondo M, Hong X, Tazawa R, Kikuchi T, Matsushima K, Nukiwa T (2002) Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol 169:469–475

    PubMed  CAS  Google Scholar 

  70. Schramm R, Liu Q, Thorlacius H (2000) Expression and function of MIP-2 are reduced by dexamethasone treatment in vivo. Br J Pharmacol 131:328–334

    PubMed  CAS  Google Scholar 

  71. Schramm R, Thorlacius H (2003) Staphylococcal enterotoxin B-induced acute inflammation is inhibited by dexamethasone: important role of CXC chemokines KC and macrophage inflammatory protein 2. Infect Immun 71:2542–2547

    PubMed  CAS  Google Scholar 

  72. Wang J, Mukaida N, Zhang Y, Ito T, Nakao S, Matsushima K (1997) Enhanced mobilization of haematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukoc Biol 62:503–509

    PubMed  CAS  Google Scholar 

  73. Armstrong DA, Major JA, Chudyk A, Hamilton TA (2004) Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J Leukoc Biol 75:641–648

    PubMed  CAS  Google Scholar 

  74. Otto VI, Heinzel-Pleines UE, Gloor SM, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) A sICAM-1 and TNF-alpha induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res 60:733–742

    PubMed  CAS  Google Scholar 

  75. Xing Z, Jordana M, Kirpalani H, Driscoll KE, Schall TJ, Gauldie J (1995) Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute lung inflammation. Am J Respir Cell Mol Biol 10:148–153

    Google Scholar 

  76. Fahey TJ 3rd, Sherry B, Tracey KJ, van Deventer S, Jones WG 2nd, Minei JP, Morgello S, Shires GT, Cerami A (1990) Cytokine production in a model of wound healing: the appearance of MIP-1, MIP-2, cachectin/TNF and IL-1. Cytokine 2:92–99

    PubMed  CAS  Google Scholar 

  77. Schramm R, Thorlacius H (2004) Neutrophil recruitment in mast cell-dependent inflammation: inhibitory mechanisms of glucocorticoids. Inflamm Res 53:644–652

    PubMed  CAS  Google Scholar 

  78. Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW (2001) Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer 93:781–785

    PubMed  CAS  Google Scholar 

  79. Kollmar O, Schilling MK, Menger MD (2004) Experimental liver metastasis: standards for local cell implantation to study isolated tumor growth in mice. Clin Exp Metastasis 21:453–460

    PubMed  Google Scholar 

  80. Kollmar O, Scheuer C, Menger MD, Schilling MK (2006) Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol 13:263–275

    PubMed  Google Scholar 

  81. Kollmar O, Menger MD, Schilling MK (2006) Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth. World J Gastroenterol 12:858–867

    PubMed  CAS  Google Scholar 

  82. Kollmar O, Junker B, Rupertus K, Menger MD, Schilling MK (2007) Studies on MIP-2 and CXCR2 expression in a mouse model of extrahepatic colorectal metastasis. EJSO 33:803–811

    PubMed  CAS  Google Scholar 

  83. Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling MK, Menger MD (2007) Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia 9:862–870

    PubMed  CAS  Google Scholar 

  84. Kollmar O, Junker B, Rupertus K, Scheuer C, Menger MD, Schilling MK (2008) Liver resection-associated macrophage inflammatory protein-2 stimulates engraftment but not growth of colorectal metastasis at extrahepatic sites. J Surg Res 145:295–302

    PubMed  CAS  Google Scholar 

  85. Kollmar O, Rupertus K, Scheuer C, Nickels RM, Haberl GC, Tilton B, Menger MD, Schilling MK (2010) CXCR4 and CXCR7 regulate angiogenesis and CT26.WT tumor growth independent from SDF-1. Int J Cancer 126:1302–1315

    PubMed  CAS  Google Scholar 

  86. Brattain MG, Strobel-Stevens J, Fine D, Webb M, Sarrif AM (1980) Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res 40:2142–2146

    PubMed  CAS  Google Scholar 

  87. Li X, Klintman D, Liu Q, Sato T, Jeppsson B, Thorlacius H (2004) Critical role of CXC chemokines in endotoxemic liver injury in mice. J Leukoc Biol 75:443–452

    PubMed  CAS  Google Scholar 

  88. Tilton B, Ho L, Oberlin E, Loetscher P, Baleux F, Clark-Lewis I, Thelen M (2000) Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med 192:313–324

    PubMed  CAS  Google Scholar 

  89. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E, Albini A, Lowell C, Berton G, Noonan DM, Cassatella MA (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172:5034–5040

    PubMed  CAS  Google Scholar 

  90. Menger MD, Laschke MW, Vollmar B (2002) Viewing the microcirculation through the window: some twenty years experience with the hamster dorsal skinfold chamber. Eur Surg Res 34:83–91

    PubMed  Google Scholar 

  91. Potter SM, Dwyer RM, Curran CE, Hennessy E, Harrington KA, Griffin DG, Kerin MJ (2009) Systemic chemokine levels in breast cancer patients and their relationship with circulating menstrual hormones. Breast Cancer Res Treat 115:279–287

    PubMed  CAS  Google Scholar 

  92. Woo IS, Hong SH, Byun JH, Kang JH, Jeon HM, Choi MG (2008) Circulating stromal cell derived factor-1alpha (SDF-1alpha) is predictive of distant metastasis in gastric carcinoma. Cancer Invest 26:256–261

    PubMed  CAS  Google Scholar 

  93. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM (2003) The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167:1676–1686

    PubMed  Google Scholar 

  94. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold MET, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:201–213

    Google Scholar 

  95. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    PubMed  CAS  Google Scholar 

  96. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18:1240–1242

    PubMed  CAS  Google Scholar 

  97. Engl T, Relja B, Marian D, Blumenberg C, Muller I, Beecken WD, Jones J, Ringel EM, Bereiter-Hahn J, Jonas D, Blaheta RA (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 8:290–301

    PubMed  CAS  Google Scholar 

  98. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Sem Cancer Biol 14:195–200

    CAS  Google Scholar 

  99. Brand S, Dambacher J, Beigel F, Olszak T, Diebold J, Otte JM, Goke B, Eichhorst ST (2005) CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 310:117–130

    PubMed  CAS  Google Scholar 

  100. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R, Florio T, Schettini G (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases and Akt. Cancer Res 63:1969–1974

    PubMed  CAS  Google Scholar 

  101. Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1α in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338

    PubMed  CAS  Google Scholar 

  102. Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG, Proia A, Terjung RL, Peters KG (2006) Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res 69:925–935

    PubMed  CAS  Google Scholar 

  103. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    PubMed  CAS  Google Scholar 

  104. Fausto N (2000) Liver regeneration. J Hepatol 32:19–31

    PubMed  CAS  Google Scholar 

  105. Kren BT, Trembley JH, Fan G, Steer CJ (1997) Molecular regulation of liver regeneration. Ann N Y Acad Sci 831:361–381

    PubMed  CAS  Google Scholar 

  106. Sato Y, Farges O, Buffello D, Bismuth H (1999) Intra- and extrahepatic leukocytes and cytokine mRNA expression during liver regeneration after partial hepatectomy in rats. Dig Dis Sci 44:806–816

    PubMed  CAS  Google Scholar 

  107. Colletti LM, Green M, Burdick MD, Kunkel SL, Strieter RM (1998) Proliferative effects of CXC chemokines in rat hepatocytes in vitro and in vivo. Shock 10:248–257

    PubMed  CAS  Google Scholar 

  108. Hogaboam CM, Bone-Larson CL, Steinhauser ML, Lukacs NW, Colletti LM, Simpson KJ, Strieter RM, Kunkel SL (1999) Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J 13:1565–1574

    PubMed  CAS  Google Scholar 

  109. Ren X, Carpenter A, Hogaboam C, Colletti L (2003) Mitogenic properties of endogenous and pharmacological doses of macrophage inflammatory protein-2 after 70% hepatectomy in the mouse. Am J Pathol 163:563–570

    PubMed  CAS  Google Scholar 

  110. Drixler TA, Borel Rinkes IH, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE (2000) Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res 60:1761–1765

    PubMed  CAS  Google Scholar 

  111. Mizutani J, Hiraoka T, Yamashita R, Miyauchi Y (1992) Promotion of hepatic metastases by liver resection in the rat. Br J Cancer 65:794–797

    PubMed  CAS  Google Scholar 

  112. Panis Y, Ribeiro J, Chretien Y, Nordlinger B (1992) Dormant liver metastases: an experimental study. Br J Surg 79:221–223

    PubMed  CAS  Google Scholar 

  113. Picardo A, Karpoff HM, Ng B, Lee J, Brennan MF, Fong Y (1998) Partial hepatectomy accelerates local tumor growth: potential roles of local cytokine activation. Surgery 124:57–64

    PubMed  CAS  Google Scholar 

  114. Slooter GD, Marquet RL, Jeekel J, Ijzermans JN (1995) Tumour growth stimulation after partial hepatectomy can be reduced by treatment with tumour necrosis factor alpha. Br J Surg 82:129–132

    PubMed  CAS  Google Scholar 

  115. Schindel DT, Grosfeld JL (1997) Hepatic resection enhances growth of residual intrahepatic and subcutaneous hepatoma, which is inhibited by octreotide. J Pediatr Surg 32:995–997

    PubMed  CAS  Google Scholar 

  116. Rashidi B, An Z, Sun FX, Sasson A, Gamagammi R, Moossa AR, Hoffmann RM (1999) Minimal liver resection strongly stimulates the growth of human colon cancer in the liver of nude mice. Clin Exp Metastasis 17:497–500

    PubMed  CAS  Google Scholar 

  117. DeJong KP, Lont HE, Bijma AM, Brouwers MA, de Vries EG, van Veen ML, Marquet RL, Slooff MJ, Terpstra OT (1995) The effect of partial hepatectomy on tumor growth in rats: in vivo and in vitro studies. Hepatology 22:1263–1272

    CAS  Google Scholar 

  118. Ono M, Tanaka N, Orita K (1986) Complete regression of mouse hepatoma transplanted after partial hepatectomy and the immunological mechanisms of such regression. Cancer Res 46:5049–5053

    PubMed  CAS  Google Scholar 

  119. Yokoyama H, Goto S, Chen CL, Pan TL, Kawano K, Kitano S (2000) Major hepatic resection may suppress the growth of tumours remaining in the residual liver. Br J Cancer 83:1096–1101

    PubMed  CAS  Google Scholar 

  120. Karpoff HM, Jarnagin W, Delman K, Fong Y (2000) Regional muramyl tripeptide phosphatidylethanolamine administration enhances hepatic immune function and tumor surveillance. Surgery 128:213–218

    PubMed  CAS  Google Scholar 

  121. Rupertus K, Kollmar O, Scheuer C, Junker B, Menger MD, Schilling MK (2007) Major but not minor hepatectomy accelerates engraftment of extrahepatic tumor cells. Clin Exp Metastasis 24:39–48

    PubMed  Google Scholar 

  122. Drixler TA, Vogten MJ, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE, Borel Rinkes IH (2002) Liver regeneration is an angiogenesis- associated phenomenon. Ann Surg 236:703–711

    PubMed  Google Scholar 

  123. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    PubMed  CAS  Google Scholar 

  124. Taub R (2004) Liver regeneration: from myth to mechanism. Nature Rev Mol Cell Biol 5:836–847

    CAS  Google Scholar 

  125. Stoeckli SJ, Steinert H, Pfaltz M, Schmid S (2002) Is there a role for positron emission tomography with 18F-fluorodeoxyglucose in the initial staging of nodal negative oral and oropharyngeal squamous cell carcinoma. Head Neck 24:345–349

    PubMed  Google Scholar 

  126. Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257

    PubMed  CAS  Google Scholar 

  127. Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A (2001) Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J Immunol 167:6217–6224

    PubMed  CAS  Google Scholar 

  128. Labow DM, Buell JE, Yoshida A, Rosen S, Posner MC (2002) Isolated pulmonary recurrence after resection of colorectal hepatic metastases – is resection indicated? Cancer J 8:342–347

    PubMed  Google Scholar 

  129. Yoshidome H, Ito H, Kimura F, Ambiru S, Shimizu H, Togawa A, Ohtsuka M, Kato A, Nukui Y, Miyazaki M (2004) Surgical treatment for extrahepatic recurrence after hepatectomy for colorectal metastases. Hepatogastroenterology 51:1805–1809

    PubMed  Google Scholar 

  130. Kimura F, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Yoshitomi H, Nozawa S, Furukawa K, Mitsuhashi N, Sawada S, Takeuchi D, Ambiru S, Miyazaki M (2006) Circulating cytokines, chemokines, and stress hormones are increased in patients with organ dysfunction following liver resection. J Surg Res 133:102–112

    PubMed  CAS  Google Scholar 

  131. Guleng B, Tateishi K, Ohta M, Kanai F, Jazag A, Ijichi H, Tanaka Y, Washida M, Morikane K, Fukushima Y, Yamori T, Tsuruo T, Kawabe T, Miyagishi M, Taira K, Sata M, Omata M (2005) Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res 65:5864–5871

    PubMed  CAS  Google Scholar 

  132. Ottaiano A, Franco R, Aiello Talamanca A, Liguori G, Tatangelo F, Delrio P, Nasti G, Barletta E, Facchini G, Daniele B, Di Blasi A, Napolitano M, Ierano C, Calemma R, Leonardi E, Albino V, De Angelis V, Falanga M, Boccia V, Capuozzo M, Parisi V, Botti G, Castello G, Vincenzo Iaffaioli R, Scala S (2006) Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res 12:2795–2803

    PubMed  CAS  Google Scholar 

  133. Mavier P, Martin N, Couchie D, Preaux AM, Laperche Y, Zafrani ES (2004) Expression of stromal cell-derived factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am J Pathol 165:1969–1977

    PubMed  CAS  Google Scholar 

  134. Zheng D, Oh SH, Jung Y, Petersen BE (2006) Oval cell response in 2-acetylaminofluorene/partial hepatectomy rat is attenuated by short interfering RNA targeted to stromal cell-derived factor-1. Am J Pathol 169:2066–2074

    PubMed  CAS  Google Scholar 

  135. Meyer M, Hensbergen PJ, van der Raaij-Helmer EM, Brandacher G, Margreiter R, Heufler C, Koch F, Narumi S, Werner ER, Colvin R, Luster AD, Tensen CP, Werner-Felmayer G (2001) Cross reactivity of three T cell attracting murine chemokines stimulating the CXC chemokine receptor CXCR3 and their induction in cultured cells and during allograft rejection. Eur J Immunol 31:2521–2527

    PubMed  CAS  Google Scholar 

  136. Hensbergen PJ, Wijnands PGJTB, Schreurs MWJ, Scheper RJ, Willemze R, Tensen CP (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28:343–351

    PubMed  CAS  Google Scholar 

  137. Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, Baggiolini M, Maggi E, Romagnani S, Serio M (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107:53–63

    PubMed  CAS  Google Scholar 

  138. Burdick MD, Murray LA, Keane MP, Xue YY, Zisman DA, Belperio JA, Strieter RM (2005) CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 171:261–268

    PubMed  Google Scholar 

  139. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A, Kleer CG, Essner JJ, Nasevicius A, Luker GD, Howard MC, Schall TJ (2007) CXCR7 (RCD1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. PNAS 104:15735–15740

    PubMed  CAS  Google Scholar 

  140. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Kollmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kollmar, O., Menger, M.D., Schilling, M.K. (2011). Role of CXC Chemokines and Receptors in Liver Metastasis – Impact on Liver Resection-Induced Engraftment and Tumor Growth. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_5

Download citation

Publish with us

Policies and ethics