Skip to main content

Imaging of Hepatic Metastases

  • Chapter
  • First Online:

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

Abstract

Both benign and malignant focal liver lesions are common occurrences and imaging the liver for focal lesions especially in cancer patients is one of the most frequent tasks in everyday radiological practice. Metastasis from other organs is the most common liver malignancy, so familiarity with appearances of liver metastases and knowledge of the best imaging tool is a necessity. In this chapter we provide detailed information on the choice of imaging modalities available for imaging liver metastases, describe liver metastases as they appear using these modalities, and highlight the preferred imaging techniques in different clinical scenarios. Recent advances in imaging of liver metastases including new MRI contrast agents, contrast enhanced ultrasound and PET/CT are described and discussed in detail. Imaging is increasingly being used as a problem solving tool for the clinical team and a better understanding of the imaging capabilities presently available is essential for improving patient care and providing personalized medicine for the cancer patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

IVC:

inferior vena cava

CT:

computed tomography

MRI:

magnetic resonance imaging

US:

ultrasound

FLL’s:

focal liver lesions

THI:

tissue harmonic imaging

IOUS:

intraoperative ultrasound

PRF:

pulse repetition frequency

CEUS:

contrast-enhanced ultrasound

PIM:

phase inversion mode

PPI:

power pulse inversion

CPS:

contrast pulse sequences

CEIOUS:

contrast enhanced intraoperative ultrasound

EFSUMB:

European Federation of Societies for Ultrasound in Medicine and Biology

FNH:

focal nodular hyperplasia

HCC:

hepatocellular carcinoma

MDCT:

multi-detector row CT

GIST:

gastrointestinal stromal tumor

RF:

radiofrequency

RECIST:

Response Evaluation Criteria in solid tumors

NCCTG:

North Central Cancer Treatment Group

NSABP:

National Surgical Adjuvant Breast and Bowel Project

SSFP:

steady-state free precision

FIESTA:

fast imaging employing steady-state acquisition

bFFFE:

balanced fast-field echo

True FISP:

true fast imaging with steady precision

True SSFP:

true steady-state free precision

Gd-BOPTA:

gadobenate dimeglumine benzyloxypropionctetraacetate

SNR:

signal to noise ratio

CNR:

contrast to noise ratio

3D:

three dimensional

THID:

transient hepatic intensity difference

SAR:

specific absorption rate

Gd-DTPA:

gadopentetate dimeglumine

Gd-DOTA:

gadolinium-tetraazacyclododecanetetraacetic acid

Gd-DTPA-BMA:

gadolinium diethylenetriaminepentaacetic acid bis

Gd-HP-DO3A:

gadolinium hydroxypropyl tetraazacyclododecane

RES:

reticuloendothelial system

SPIO:

superparamagnetic particles of iron oxide

DWI:

diffusion-weighted MR imaging

PET:

positron emission tomography

BGO:

bismuth germinate

LSO:

lutetium oxyorthosilicate

GSO:

gadolinium silicate

SUV:

standardized uptake value

References

  1. Auh YH, Rubenstein WA, Zirinsky K et al (1984) Accessory fissures of the liver: CT and sonographic appearance. AJR Am J Roentgenol 143:565–572

    PubMed  CAS  Google Scholar 

  2. Lazarchick J, De Souza e Silva NA, Nichols DR et al (1973) Pyogenic liver abscess. Mayo Clin Proc 48:349–355

    PubMed  CAS  Google Scholar 

  3. Dawson J, Tan K (1992) Anatomy of the liver. In: Millward-Sadler GH, Wright R, Arthur MJP (eds) Wright’s liver and biliary disease, vol 2, 3rd ed. WB Saunders, Philadelphia, PA, pp 3–11

    Google Scholar 

  4. Goldsmith M, Woodburne R (1957) Surgical anatomy pertaining to liver resection. Surg Gynecol Obstet 141:429–437

    Google Scholar 

  5. Couinaud C (1957) Le foie: etudes anatomiques et chirurgicales. Masson, Paris

    Google Scholar 

  6. Bismuth H (1982) Surgical anatomy and anatomical surgery of the liver. World J Surg 6:3–9

    PubMed  CAS  Google Scholar 

  7. Fasel JH, Selle D, Evertsz CJ et al (1998) Segmental anatomy of the liver: poor correlation with CT. Radiology 206:151–156

    PubMed  CAS  Google Scholar 

  8. Edmunson H, Craig J (1987) Neoplasms of the liver. In: Schiff l (ed) Diseases of the liver, 8th ed. Lippincott, Philadelphia, PA, p 1109

    Google Scholar 

  9. Cosgrove DO (2001) Malignant liver disease. In: Meire HB, Cosgrove DO, Dewbury KC, Farrant P (eds) Clinical ultrasound a comprehensive text, vol 1, 2nd edn. Abdominal and general ultrasound. Churchill livingstone, London, p 211–231

    Google Scholar 

  10. Dietrich CF (2004) Characterization of focal liver lesions with contrast enhanced ultrasonography. Eur J Radiol 51S:S9–S17

    Google Scholar 

  11. Eisenberg RL (2009) Clinical imaging: an atlas of differential diagnosis, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 626–632

    Google Scholar 

  12. Lencioni R, Cioni D, Bartolozzi C (2005) Focal liver lesions detection, characterization, ablation. Springer, New York, NY, pp 261–273

    Google Scholar 

  13. Kanematsu M, Kondo H, Goshima S et al (2006) Imaging liver metastases: review and update. Eur J Radiol 58:217–228

    PubMed  Google Scholar 

  14. Kinkel K, Lu Y, Both M et al (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR Imaging, PET): a meta-analysis. Radiology 224:748

    Google Scholar 

  15. Bipat S, van Leeuwen MS, Comans EF et al (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 237:123–131

    PubMed  Google Scholar 

  16. Harvey CJ, Albrecht T (2001) Ultrasound of focal liver lesions. Eur Radiol 11:1578–1593

    PubMed  CAS  Google Scholar 

  17. Middleton WD, Kurtz AB, Hertzberg BS (2004) Ultrasound: the requisites, 2nd edn. Mosby, St. Louis, MO, pp 35–38

    Google Scholar 

  18. Hohmann J, Skrok J, Puls R et al (2003) Characterization of focal liver lesions with contrast-enhanced low MI real time ultrasound and SonoVue. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:835–843

    PubMed  CAS  Google Scholar 

  19. Choudhry S, Gorman B, Charboneau JW et al (2000) Comparison of tissue harmonic imaging with conventional US in abdominal disease.1 RadioGraphics 20:1127–1135

    CAS  Google Scholar 

  20. Bluemke DA, Paulson EK, Choti MA et al (2000) Detection of hepatic lesions in candidates for surgery: comparison of ferumoxides-enhanced MR imaging and dual-phase helical CT. AJR 175:1653–1658

    PubMed  CAS  Google Scholar 

  21. Schmidt J, Strotzer M, Fraunhofer S et al (2000) Intraoperative ultrasonography versus helical computed tomography and computed tomography with arterioportography in diagnosing colorectal liver metastases: lesion by lesion analysis. World J Surg 24:43–48

    PubMed  CAS  Google Scholar 

  22. Clarke MP, Kane RA, Steele DG et al (1998) Prospective comparison of preoperative imaging and intraoperative ultrasonography in the detection of liver tumors. Surgery 106:849–855

    Google Scholar 

  23. Jeffrey RB Jr, Ralls PW (1995) The liver. In: JeffreyRB Jr, Ralls PW (eds) Sonography of the abdomen. Raven, New York, NY, p 71–177

    Google Scholar 

  24. Bartolotta TV, Taibbi A, Midiri M et al (2009) Focal liver lesions: contrast-enhanced ultrasound. Abdom Imag 34:193–209

    Google Scholar 

  25. Cosgrove D (2006) Ultrasound contrast agents: An overview. Eur J Radiol 60:324–330

    PubMed  Google Scholar 

  26. Brannigan M, Burns PN, Wilson SR (2004) Blood flow patterns in focal liver lesions at microbubble-enhanced US. Radiographics 24:921–935

    PubMed  Google Scholar 

  27. Cosgrove D, Blomley M (2004) Liver tumors: evaluation with contrast-enhanced ultrasound. Abdom Imag 29:446–454

    CAS  Google Scholar 

  28. Krishna PD, Newhouse VL (1997) Second harmonic characteristics of the ultrasound contrast agents albunex and FSO69. Ultrasound Med Biol 23:453

    PubMed  CAS  Google Scholar 

  29. Schutt E, Klein D, Mattrey R, Riess J (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Eng 42:3218

    CAS  Google Scholar 

  30. Uhlendorf V, Scholle FD, Reinhardt M (2000) Acoustic behaviour of current ultrasound contrast agents. Ultrasonics 38:81–86

    PubMed  CAS  Google Scholar 

  31. Burns PN, Wilson SR, Simpson DH (2000) Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. Invest Radiol 35:58

    Google Scholar 

  32. Burns PN, Hope-Simpson D, Averkiou MA (2000) Nonlinear imaging. Ultrasound Med Biol 26:S19–22

    PubMed  Google Scholar 

  33. Burns P, Powers J, Hope-Simpson D et al (1994) Harmonic power mode Doppler using microbubble contrast agents: and improved method for small vessel flow imaging. Ultrasonic symposium 1994. In: Proceedings of the IEEE UFFC, p 1547 (online library)

    Google Scholar 

  34. Phillips P (2001) Contrast pulse sequences (CPS): Imaging nonlinear microbubbles. In: 2001 IEEE Ultrasonics Symposium: IEEE (online library)

    Google Scholar 

  35. Quaia E, D_Onofrio M, Palumbo A et al (2006) Comparison of contrast-enhanced ultrasonography versus baseline ultrasound and contrast-enhanced computed tomography in metastatic disease of the liver: diagnostic performance and confidence. Eur Radiol 16:1599–1609

    PubMed  Google Scholar 

  36. Piscaglia F, Corradi F, Mancini M et al (2007) Real time contrast enhanced ultrasonography in detection of liver metastases from gastrointestinal cancer. BMC Cancer 7:171

    PubMed  Google Scholar 

  37. Konopke R, Bunk A, Kersting S (2007) The role of contrastenhanced ultrasound for focal liver lesion detection: an overview. Ultrasound Med Biol 33:1515–1526

    PubMed  CAS  Google Scholar 

  38. Quaia E, Bertolotto M, Forga´ cs B et al (2003) Detection of liver metastases by pulse inversion harmonic imaging during Levovist late phase: comparison with conventional ultrasound and helical CT in 160 patients. Eur Radiol 13:475–483

    PubMed  Google Scholar 

  39. Morin SHX, Lim AKP, Cobbold JFL et al (2007) Use of second generation contrast-enhanced ultrasound in the assessment of focal liver lesions. World J Gastroenterol 13:5963–5970

    Google Scholar 

  40. Leen E, Ceccotti P, Kalogeropoulou C et al (2006) Prospective multicenter trial evaluating a novel method of characterizing focal liver lesions using contrast enhanced sonography. AJR 186:1551–1559

    PubMed  Google Scholar 

  41. Ding H, Wang WP, Huang BJ et al (2005) Imaging of focal liver lesions: low-mechanical-index real-time ultrasonography with SonoVue. J Ultrasound Med 24:285–297

    PubMed  Google Scholar 

  42. Quaia E, Calliada F, Bertolotto M et al (2004) Characterization of focal liver lesions with contrast-specific US modes and sulphur hexafluoride-filled microbubble contrast agent: diagnostic performance and confidence. Radiology 232:420–430

    PubMed  Google Scholar 

  43. Bartolotta TV, Taibbi A, Galia M et al (2007) Characterization of hypoechoic focal hepatic lesions in patients with fatty liver: diagnostic performance and confidence of contrast-enhanced ultrasound. Eur Radiol 17:650–661

    PubMed  Google Scholar 

  44. Von Herbay A, Vogt C, Willers R et al (2004) Real-time imaging with the sonographic contrast agent SonoVue: differentiation between benign and malignant hepatic lesions. J Ultrasound Med 23:1557–1568

    Google Scholar 

  45. Jang HJ, Kim TK, Wilson SR (2006) Imaging of malignant liver masses: characterization and detection. Ultrasound Q 22:19–29

    PubMed  Google Scholar 

  46. Fioole B, de Haas RJ, Wicherts DA et al (2008) Additional value of contrast enhanced intraoperative ultrasound for colorectal liver metastases. Eur J Radiol 67:169–176

    PubMed  Google Scholar 

  47. Torzilli G, Del Fabbro D, Palmisano A et al (2005) Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J Gastrointest Surg 9:1148–1153

    PubMed  Google Scholar 

  48. Albrecht T, Blomley M, Bolondi L et al (2004) Guidelines for the use of contrast agents in ultrasound. Ultraschall Med 25:249–256

    PubMed  CAS  Google Scholar 

  49. Kamel IR, Georgiades C, Fishman EK (2003) Incremental value of advanced image processing of multislice computed tomography data in the evaluation of hypervascular liverlesions. J Comput Assist Tomogr 27:652–656

    PubMed  Google Scholar 

  50. Kopka L, Rodenwaldt J, Hamm B (2001) Biphasic multi-slice helical CT of the liver: intraindividual comparison of different slice thicknesses for the detection and characterization of focal liver lesions. Radiology 217:367

    Google Scholar 

  51. Haider MA, Amitai MM, Rappaport DC et al (2002) Multi-detector row helical CT in preoperative assessment of small (< or = 1.5 cm) liver metastases: is thinner collimation better? Radiology 225:137–142

    PubMed  Google Scholar 

  52. Jones EC, Chezmar JL, Nelson RC et al (1992) The frequency and significance of small (less than or equal to 15 mm) hepatic lesions detected by CT. AJR 158:535–539

    PubMed  CAS  Google Scholar 

  53. LH Swartz, Gandras EJ, Colangelo SM et al (1999) Prevalence and importance of small hepatic lesions found at CT in patients with cancer. Radiology 210:71–74

    Google Scholar 

  54. Khalil HI, Patterson SA, Panicek DM (2005) Hepatic lesions deemed too small to characterize at CT: prevalence and importance in women with breast cancer. Radiology 235:872–878

    PubMed  Google Scholar 

  55. Jang HJ, Lim HK, Lee WJ et al (2002) Small hypoattenuating lesions in the liver on single-phase helical CT in preoperative patients with gastric and colorectal cancer: prevalence, significance, and differentiating features. J Comput Assist Tomogr 26:718–724

    PubMed  Google Scholar 

  56. Fong Y, Sun RL, Jarnagin W et al (1999) An analysis of 412 cases of hepatocellular carcinoma at a western center. Ann Surg 229:790–799

    PubMed  CAS  Google Scholar 

  57. Rose AT, Rose DM, Pinson CW et al (1998) Hepatocellular carcinoma outcomes based on indicate treatment strategy. Am J Surg 64:1128–1134

    CAS  Google Scholar 

  58. Yoon SS, Tanabe TK (1999) Surgical treatment and other regional treatments for colorectal cancer liver metastases. Oncologist 4:197–208

    PubMed  CAS  Google Scholar 

  59. Wood CB, Gillis CR, Blumgart LH (1976) A retrospective study of the natural history of patients with liver metastases from colorectal cancer. Clin Oncol 2:285–288

    PubMed  CAS  Google Scholar 

  60. Miller FH, Butler RS, Hoff FL et al (1998) Using triphasic helical CT to detect focal hepatic lesions in patients with neoplasms. AJR 171:643–649

    PubMed  CAS  Google Scholar 

  61. Semelka RC, Hussain SM, Marcos HB et al (2000) Perilesional enhancement of hepatic metastases: correlation between MR imaging and histopathologic findings-initial observations. Radiology 215:89–94

    PubMed  CAS  Google Scholar 

  62. DuBrow RA, David CL, Libshitz HI et al (1990) Detection of hepatic metastases in breast cancer: the role of nonenhanced and enhanced CT scanning. J Comput Assist Tomogr 14:366–369

    PubMed  CAS  Google Scholar 

  63. Laghi A, Iannaccone R, Rossi P et al (2003) Hepatocellular carcinoma: detection with triple-phase multi-detector row CT in patients with chronic hepatitis. Radiology 226:543–549

    PubMed  Google Scholar 

  64. Nino-Murcia M, Olcott EW, Jeffrey RB Jr et al (2000) Focal liver lesions: Pattern-based classification Scheme for enhancement at arterial phase CT1. Radiology 215:746–751

    PubMed  CAS  Google Scholar 

  65. Semelka RC, Helmberger TK (2001) Contrast agents for MR imaging of the liver. Radiology 218:327–332

    Google Scholar 

  66. Ferrucci JT (1991) Liver tumor imaging: current concepts. Keio J Med 40:194–205

    PubMed  CAS  Google Scholar 

  67. Kuszyk BS, Bluemke DA, Urban BA et al (1996) Portal-phase contrast-enhanced helical CT for the detection of malignant hepatic tumors: sensitivity based on comparison with intraoperative and pathologic findings. AJR 166:91–95

    PubMed  CAS  Google Scholar 

  68. Stoupis C, Taylor HM, Paley MR et al (1998) The Rocky liver: radiologic-pathologic correlation of calcified hepatic masses. Radiographics 18:675–685; quiz 726

    PubMed  CAS  Google Scholar 

  69. Hale HL, Husband JE, Gossios K et al (1998) CT of calcified liver metastases in colorectal carcinoma. Clin Radiol 53:735–741

    PubMed  CAS  Google Scholar 

  70. Michael C, Robert B, Paul S (2002) Cystic changes in hepatic metastases from gastrointestinal stromal tumors (GISTs) treated with Gleevec (imatinib mesylate). AJR 179:1059–1062

    Google Scholar 

  71. Muramatsu Y, Takayasu K, Moriyama N et al (1986) Peripheral low density area of hepatic tumors: CT-pathologic correlation. Radiology 1601:49–52

    Google Scholar 

  72. Gabata T, Matsui O, Kadoya M et al (1998) Delayed MR imaging of the liver: correlation of delayed enhancement of hepatic tumors and pathologic appearance. Abdom Imaging 23:309–313

    PubMed  CAS  Google Scholar 

  73. Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities part I. J Vasc Interv Radiol 12:1020–1032

    Google Scholar 

  74. Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities part II. J Vasc Interv Radiol 12:1135–1148

    PubMed  CAS  Google Scholar 

  75. Goldberg SN, Grassi CJ, Cardella JF et al (2005) Imageguided tumor ablation: standardization of terminology and reporting criteria. Radiology 235:728–739

    PubMed  Google Scholar 

  76. Choi H, Loyer EM, DuBrow RA et al (2001) Radiofrequency ablation of liver tumors: assessment of therapeutic response and complications. RadioGraphics 21:S41–S54

    PubMed  Google Scholar 

  77. Veit P, Antoch G, Stergar H et al (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16:80–87

    PubMed  Google Scholar 

  78. Anderson GS, Brinkmann F, Soulen MC (2003) FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 28:192–197

    PubMed  Google Scholar 

  79. Lim HK, Choi D, Lee WJ et al (2001) Hepatocellular carcinoma treated with percutaneous radio-frequency ablation: evaluation with follow-up multiphase helical CT. Radiology 221:447–454

    PubMed  CAS  Google Scholar 

  80. Goldberg SN, Gazelle GS, Compton CC et al (2000) Treatment of intrahepatic malignancy with radiofrequency ablation: radiologicpathologic correlation. Cancer 88:2452–2463

    PubMed  CAS  Google Scholar 

  81. Dromain C, de Baere T, Elias D et al (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223:255–262

    PubMed  Google Scholar 

  82. Tuma RS (2006) sometimes size doesn’t matter: reevaluating RECIST and tumor response rate endpoints. J Natl Cancer Inst 98:1272–1274

    PubMed  Google Scholar 

  83. Eisenhauera EA, Therasseb P, Bogaertsc J (2009) New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), Eur J Cancer 45:228–247

    Google Scholar 

  84. Semelka RC, Worawattanakul S, Noone TC et al (1999) Chemotherapy-treated liver metastases mimicking hemangiomas on MR images. Abdom Imaging 24:378–382

    PubMed  CAS  Google Scholar 

  85. Mueller GC, Hussain HK, Carlos RC et al (2003) Effectiveness of MR imaging in characterizing small hepatic lesions: routine versus expert interpretation. AJR 180:673–680

    PubMed  Google Scholar 

  86. Semelka RC, Armao DM, Elias J Jr et al (2007) Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging 25:900–909

    PubMed  Google Scholar 

  87. Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusionweighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822

    PubMed  Google Scholar 

  88. Morana G, Salviato E, Guarise A (2007) Contrast agents for hepatic MRI. Cancer Imaging 7:S24–S27

    PubMed  Google Scholar 

  89. Bartolozzi C, Cioni D, Donati F et al (2001) Focal liver lesions: MR imaging-pathologic correlation. Eur Radiol 11:1374–1388

    PubMed  CAS  Google Scholar 

  90. Ramalho M, Altun E, Heredia V (2007) Liver MR Imaging: 1.5T versus 3T. Magn Reson Imaging Clin N Am 15:321–347

    PubMed  Google Scholar 

  91. Keogan MT, Edelman RR (2001) Technologic advances in abdominal MR imaging. Radiology 220:310–320

    PubMed  CAS  Google Scholar 

  92. Morrin MM, Rofsky NM (2001) Techniques for liver MR imaging. Magn Reson Imaging Clin N Am 9:675–696

    PubMed  CAS  Google Scholar 

  93. Low RN, Alzate GD, Schimakawa A (1997) Motion suppression in MR imaging of the liver: comparison of respiratory-triggered and nontriggered fast spin-echo sequences. AJR 168:225–231

    PubMed  CAS  Google Scholar 

  94. Kanematsu M, Hoshi H, Itoh K et al (1999) Focal hepatic lesion detection: comparison of four fat-suppressed T2-weighted MR imaging pulse sequences. Radiology 211:363–371

    PubMed  CAS  Google Scholar 

  95. Heidemann RM, Ozsarlak O, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337

    PubMed  Google Scholar 

  96. Coenegrachts K, Ghekiere J, Denolin V et al (2010) Perfusion maps of the whole liver based on high temporal and spatial resolution contrast-enhanced MRI (4D THRIVE): Feasibility and initial results in focal liver lesions. Eur J Radiol 74:529–535

    Google Scholar 

  97. Rofsky NM, Lee VS, Laub G et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884

    PubMed  CAS  Google Scholar 

  98. Martin DR, Semelka RC (2005) Magnetic resonance imaging of the liver: review of techniques and approach to common diseases. Semin Ultrasound CT MR 26:116–131

    PubMed  Google Scholar 

  99. Kanematsu M, Semelka R, Matsuo M et al (2002) Gadolinium-enhanced MR imaging of the liver: optimizing imaging delay for hepatic arterial and portal venous phases—a prospective randomized study in patients with chronic liver damage. Radiology 225:407–415

    PubMed  Google Scholar 

  100. Outwater E, Tomaszewski JE, Daly JM et al (1991) Hepatic colorectal metastases: correlation of MR imaging and pathologic appearance. Radiology 180:327–332

    PubMed  CAS  Google Scholar 

  101. Danet IM, Semelka RC, Leonardou P et al (2003) Spectrum of MRI appearances of untreated metastases of the liver. AJR 181:809–17

    PubMed  Google Scholar 

  102. Namasivayam S, Martin DR, Saini S (2007) Imaging of liver metastases: MRI Cancer Imag 7:2–9

    Google Scholar 

  103. Silva AC, Evans JM, McCullough AE (2009) MR Imaging of hypervascular liver masses: a review of current techniques. RadioGraphics 29:385–402

    PubMed  Google Scholar 

  104. Sohn J, Siegelman E, Osiason A (2001) Unusual patterns of hepatic steatosis caused by the local effect of insulin revealed on chemical shift MR imaging. AJR 176:471–474

    PubMed  CAS  Google Scholar 

  105. Colagrande S, Centi N, Galdiero R et al (2007) Transient hepatic intensity differences. II. Those not associated with focal lesions. AJR 188:160–166

    PubMed  Google Scholar 

  106. Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3.0T. Magn Reson Med 54:507–512

    PubMed  Google Scholar 

  107. Bazelaire CM, Duhamel GD, Rofsky NM et al (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    PubMed  Google Scholar 

  108. Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR 186:1524–1532

    PubMed  Google Scholar 

  109. Morakkabati-Spitz N, Gieseke J, Kuhl C et al (2005) 3.0-T high-field magnetic resonance imaging of the female pelvis: preliminary experiences. Eur J Radiol 15:639–644

    CAS  Google Scholar 

  110. Lencioni R, Cioni D, Crocetti L et al (2004) Magnetic resonance imaging of liver tumors. J Hepatol 40:162–171

    PubMed  Google Scholar 

  111. Bellin MF, Vasile M, Morel-Precetti S (2003) Currently usednon-specific extracellular MR contrast media. Eur Radiol 13:2688–2698

    PubMed  CAS  Google Scholar 

  112. Balci NC, Semelka RC (2005) Contrast agents for MR imaging of the liver. Radiol Clin North Am;43:887–898

    PubMed  Google Scholar 

  113. Vogl TJ, Schwarz W, Blume S et al (2003) Preoperative evaluation of malignant liver tumors: comparison of unenhanced and SPIO (Resovist)-enhanced MR imaging with biphasic CTAP and intraoperative US. Eur Radiol 13:262–272

    PubMed  Google Scholar 

  114. Ward J, Feng C, Guthrie JA et al (2000) Hepatic lesion detection after superparamagnetic iron oxide enhancement: comparison of five T2-weighted sequences at 1.0 T by using alternative free response receiver operating characteristic analysis. Radiology 214:159–166

    Google Scholar 

  115. Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559–578

    PubMed  Google Scholar 

  116. Huppertz A, Balzer T, Blakeborough A et al (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275

    PubMed  Google Scholar 

  117. Grazioli L, Morana G, Kirchin MA et al (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumineenhanced MR imaging: prospective study. Radiology 236:166–177

    PubMed  Google Scholar 

  118. Koyama T, Tamai K, Togashi K (2006) Current status of body MR imaging: fast MR imaging and diffusion-weighted imaging. Int J Clin Oncol 11:278–285

    PubMed  Google Scholar 

  119. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR 188:1622–1635

    PubMed  Google Scholar 

  120. Moteki T, Sekine T (2004) Echo planar MR imaging of the liver: comparison of images with and without motion probing gradients. J Magn Reson Imaging 19:82–90

    PubMed  Google Scholar 

  121. Nasu K, Kuroki Y, Nawano S et al (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    PubMed  Google Scholar 

  122. Ichikawa T, Haradome H, Hachiya J et al (1998) Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR 170:397–402

    PubMed  CAS  Google Scholar 

  123. Koh DM, Scurr E, Collins DJ et al (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16:1898–1905

    PubMed  CAS  Google Scholar 

  124. Taouli B, Vilgrain V, Dumont E et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    PubMed  Google Scholar 

  125. Chan JH, Tsui EY, Luk SH et al (2001) Diffusion weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging 26:161–165

    PubMed  CAS  Google Scholar 

  126. Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620

    PubMed  CAS  Google Scholar 

  127. Ichikawa T, Haradome H, Hachiya J et al (1998) Characterization of hepatic lesions by perfusion-weighted MR imaging with an echoplanar sequence. AJR 170:1029–1034

    PubMed  CAS  Google Scholar 

  128. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    PubMed  CAS  Google Scholar 

  129. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    PubMed  CAS  Google Scholar 

  130. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    PubMed  Google Scholar 

  131. Selzner M, Hany TF, Wildbrett P et al (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240:1027–1034

    PubMed  Google Scholar 

  132. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77

    PubMed  CAS  Google Scholar 

  133. Reinartz P, Wieres FJ, Schneider W et al (2004) Side-by-side reading of PET and CT scans in oncology: which patients might profit from integrated PET/CT? Eur J Nucl Med Mol Imaging 31:1456–1461

    PubMed  Google Scholar 

  134. Burger C, Goerres G, Schoenes S et al (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927

    PubMed  CAS  Google Scholar 

  135. Yau YY, Chan WS, Tam YM et al (2005) Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 46:283–291

    PubMed  Google Scholar 

  136. Brechtel K, Klein M, Vogel M et al (2006) Optimized contrast-enhanced CT protocols for diagnostic whole-body 18F-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging. J Nucl Med 47:470–476

    PubMed  Google Scholar 

  137. Mankoff DA, Muzi M, Krohn KA (2003) Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol 5:281–285

    PubMed  Google Scholar 

  138. Weber WA, Ziegler SI, Thodtmann R et al (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777

    PubMed  CAS  Google Scholar 

  139. Keyes JW (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  140. Sugawara Y, Zasadny KR, Neuhoff AW et al (1999) Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 213:521–525

    PubMed  CAS  Google Scholar 

  141. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    Google Scholar 

  142. Kitagawa Y, Nishizawa S, Sano K et al (2003) Prospective comparison of 18F-FDG PET with conventional imaging modalities (MRI, CT, and 67 Ga scintigraphy) in assessment of combined intraarterial chemotherapy and radiotherapy for head and neck carcinoma. J Nucl Med 44:198–206

    PubMed  Google Scholar 

  143. Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924

    Google Scholar 

  144. Abdel-Nabi H, Doerr RJ, Lamonica DM et al (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760

    Google Scholar 

  145. Hustinx R, Paulus P, Jacquet N et al (1998) Clinical evaluation of whole-body 18F-fluorodeoxyglucose positron emission tomography in the detection of liver metastases. Ann Oncol 9:397–401

    Google Scholar 

  146. Fong Y, Saldinger PF, Akhurst T et al (1999) Utility of 18F-FDG positron emission tomography scanning in selection of patients for resection of hepatic colorectal metastases. Am J Surg 178:282–287

    PubMed  CAS  Google Scholar 

  147. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508

    Google Scholar 

  148. Soyer P (1993) Segmental Anatomy of the liver: utility of a nomenclature accepted worldwide. AJR Am J Roentgenol 161:572–573

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Ruth Ramadeen, executive research secretary, Department of Radiology, McGill University Health Center for her help in the preparation of the manuscript. Dr. El-Khodary wishes to thank his lovely wife Marwa, daughter Zeina and son Aly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Khodary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

El Khodary, M., Milot, L., Reinhold, C. (2011). Imaging of Hepatic Metastases. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_11

Download citation

Publish with us

Policies and ethics