Skip to main content

The TRPML3 Channel: From Gene to Function

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

TRPML3 is a transient receptor potential (TRP) channel that is encoded by the mucolipin 3 gene (MCOLN3), a member of the small mucolipin gene family. Mcoln3 shows a broad expression pattern in embryonic and adult tissues that includes differentiated cells of skin and inner ear. Dominant mutant alleles of murine Mcoln3 cause embryonic lethality, pigmentation defects and deafness. The TRPML3 protein features a six-transmembrane topology and functions as a Ca2+ permeable inward rectifying cation channel that is open at sub-physiological pH and closes as the extracytosolic pH becomes more acidic. TRPML3 localizes to the plasmamembrane and to early- and late-endosomes as well as lysosomes. Recent advances suggest that TRPML3 may regulate the acidification of early endosomes, hence playing a critical role in the endocytic pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  CAS  PubMed  Google Scholar 

  2. Chenik M, Douagi F, Achour YB, Khalef NB, Ouakad M, Louzir H, Dellagi K (2005) Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 98:5–13

    Article  PubMed  Google Scholar 

  3. Cuajungco MP, Samie MA (2008) The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457:463–473

    Article  CAS  PubMed  Google Scholar 

  4. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 105:353–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci USA 104:18321–18326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. van Aken AF, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr., Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  CAS  PubMed  Google Scholar 

  8. Fares H, Greenwald I (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28:64–68

    CAS  PubMed  Google Scholar 

  9. Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99:4355–4360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci USA 101:4483–4488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cable J, Steel KP (1998) Combined cochleo-saccular and neuroepithelial abnormalities in the Varitint-waddler-J (Va J) mouse. Hear Res 123:125–136

    Article  CAS  PubMed  Google Scholar 

  13. Cloudman AM, Bunker LE (1945) The varitint-waddler mouse. J Hered 36:258–263

    Google Scholar 

  14. Lane PW (1969) VaJ – varitint-waddler-jackson. Mouse News Lett 41:32

    Google Scholar 

  15. Deol MS (1954) The anomalies of the labyrinth of the mutants varitint-waddler, shaker-2 and jerker in the mouse. J Genet 52:562–588

    Article  Google Scholar 

  16. Kim HJ, Jackson T, Noben-Trauth K (2003) Genetic analyses of the mouse deafness mutations varitint-waddler (Va) and jerker (Espnje). J Assoc Res Otolaryngol 4:83–90

    Article  PubMed Central  PubMed  Google Scholar 

  17. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jors S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA 104:19583–19588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S (2007) Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem 282:36138–36142

    Article  CAS  PubMed  Google Scholar 

  19. Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, Muallem S, Soyombo A (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 280:43218–43223

    Article  CAS  PubMed  Google Scholar 

  20. Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Martina JA, Lelouvier B, Puertollano R (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S (2009) The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10:1157–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27:1197–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. MGD (2010) Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, ME. World Wide Web (URL: http://www.informatics.jax.org)

Download references

Acknowledgments

I thank Rosa Puertollano and Jamie García-Añoveros for discussions and comments on the manuscript. Supported by the Intramural Research Program at the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Noben-Trauth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Noben-Trauth, K. (2011). The TRPML3 Channel: From Gene to Function. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_13

Download citation

Publish with us

Policies and ethics