Skip to main content

Structural Biology of TRP Channels

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Structural studies on TRP channels, while limited, are poised for a quickened pace and rapid expansion. As of yet, no high-resolution structure of a full length TRP channel exists, but low-resolution electron cryomicroscopy structures have been obtained for 4 TRP channels, and high-resolution NMR and X-ray crystal structures have been obtained for the cytoplasmic domains, including an atypical protein kinase domain, ankyrin repeats, coiled coil domains and a Ca2+-binding domain, of 6 TRP channels. These structures enhance our understanding of TRP channel assembly and regulation. Continued technical advances in structural approaches promise a bright outlook for TRP channel structural biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  2. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gaudet R (2008) TRP channels entering the structural era. J Physiol 586:3565–3575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gaudet R (2009) Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133:231–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Latorre R, Zaelzer C, Brauchi S (2009) Structure-functional intimacies of transient receptor potential channels. Q Rev Biophys 42:201–246

    Article  CAS  PubMed  Google Scholar 

  7. Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133:239–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Blow D (2002) Outline of crystallography for biologists. Oxford University Press, Oxford

    Google Scholar 

  9. Jonic S, Venien-Bryan C (2009) Protein structure determination by electron cryo-microscopy. Curr Opin Pharmacol 9:636–642

    Article  CAS  PubMed  Google Scholar 

  10. Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372

    Article  CAS  PubMed  Google Scholar 

  11. Frank J (2009) Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Q Rev Biophys 42:139–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W (2010) 4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107:4967–4972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Foster MP, McElroy CA, Amero CD (2007) Solution NMR of large molecules and assemblies. Biochemistry 46:331–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  CAS  PubMed  Google Scholar 

  16. Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617

    Article  CAS  PubMed  Google Scholar 

  17. Newby ZE, O‘Connell JD 3rd, Gruswitz F, Hays FA, Harries WE, Harwood IM, Ho JD, Lee JK, Savage DF, Miercke LJ, Stroud RM (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bannen RM, Bingman CA, Phillips GN Jr (2007) Effect of low-complexity regions on protein structure determination. J Struct Funct Genomics 8:217–226

    Article  CAS  PubMed  Google Scholar 

  19. Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282:36961–36970

    Article  CAS  PubMed  Google Scholar 

  20. Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383

    Article  CAS  PubMed  Google Scholar 

  21. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K:A (2010) 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cheng W, Yang F, Takanishi CL, Zheng J (2007) Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129:191–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Middelbeek J, Clark K, Venselaar H, Huynen MA, van Leeuwen FN (2010) The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci 67:875–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    Article  CAS  PubMed  Google Scholar 

  28. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIKa bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  CAS  PubMed  Google Scholar 

  29. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  CAS  PubMed  Google Scholar 

  30. Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–15178

    Article  CAS  PubMed  Google Scholar 

  32. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chang Q, Gyftogianni E, van de Graaf SF, Hoefs S, Weidema FA, Bindels RJ, Hoenderop JG (2004) Molecular determinants in TRPV5 channel assembly. J Biol Chem 279:54304–54311

    Article  CAS  PubMed  Google Scholar 

  34. Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA (2004) Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279:34456–34463

    Article  CAS  PubMed  Google Scholar 

  35. Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U (2002) Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 277:44448–44454

    Article  CAS  PubMed  Google Scholar 

  36. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N (2007) Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem 282:15894–15902

    Article  CAS  PubMed  Google Scholar 

  37. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    Article  CAS  PubMed  Google Scholar 

  38. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article  CAS  PubMed  Google Scholar 

  40. McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers ArchChem 460:437–450

    Article  CAS  Google Scholar 

  44. Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–R226

    Article  CAS  PubMed  Google Scholar 

  48. Sotomayor M, Corey DP, Schulten K (2005) In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13:669–682

    Article  CAS  PubMed  Google Scholar 

  49. Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    Article  CAS  PubMed  Google Scholar 

  50. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    Article  CAS  PubMed  Google Scholar 

  51. Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Protein Chem 70:37–78

    Article  CAS  PubMed  Google Scholar 

  52. Parry DA, Fraser RD, Squire JM (2008) Fifty years of coiled-coils and α-helical bundles: a close relationship between sequence and structure. J Struct Biol 163:258–269

    Article  CAS  PubMed  Google Scholar 

  53. Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  CAS  PubMed  Google Scholar 

  54. Grigoryan G, Keating AE (2008) Structural specificity in coiled–coil interactions. Curr Opin Struct Biol 18:477–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lepage PK, Boulay G (2007) Molecular determinants of TRP channel assembly. Biochem Soc Trans 35:81–83

    Article  CAS  PubMed  Google Scholar 

  56. Schindl R, Romanin C (2007) Assembly domains in TRP channels. Biochem Soc Trans 35:84–85

    Article  CAS  PubMed  Google Scholar 

  57. Fujiwara Y, Minor DL Jr (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106:11558–11563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mei ZZ, Xia R, Beech DJ, Jiang LH (2006) Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281:38748–38756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    Article  CAS  PubMed  Google Scholar 

  62. Phelps CB, Gaudet R (2007) The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem 282:36474–36480

    Article  CAS  PubMed  Google Scholar 

  63. Tsuruda PR, Julius D, Minor DL Jr (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Erler I, Al-Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA (2006) Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 281:38396–38404

    Article  CAS  PubMed  Google Scholar 

  65. Tsiokas L (2009) Function and regulation of TRPP2 at the plasma membrane. Am J Physiol Renal Physiol 297:F1–F9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76:149–168

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zhang P, Luo Y, Chasan B, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Cantero Mdel R, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18:1238–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wu G, Tian X, Nishimura S, Markowitz GS, D‘Agati V, Park JH, Yao L, Li L, Geng L, Zhao H, Edelmann W, Somlo S (2002) Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11:1845–1854

    Article  CAS  PubMed  Google Scholar 

  70. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    Article  CAS  PubMed  Google Scholar 

  71. Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Wiztgall R, Ehrlich BE, Somlo S (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J Biol Chem 279:19987–19995

    Article  CAS  PubMed  Google Scholar 

  72. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  CAS  PubMed  Google Scholar 

  73. Celic A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ (2008) Domain mapping of the polycystin-2 C-terminal tail using de novo molecular modeling and biophysical analysis. J Biol Chem 283:28305–28312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Schumann F, Hoffmeister H, Bader R, Schmidt M, Witzgall R, Kalbitzer HR (2009) Ca2+-dependent conformational changes in a C-terminal cytosolic domain of polycystin-2. J Biol Chem 284:24372–24383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME (2010) Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci USA 107:9176–9181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001) Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9:215–220

    Article  CAS  PubMed  Google Scholar 

  77. Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, Engel A (1997) The three-dimensional structure of aquaporin-1. Nature 387:624–627

    Article  CAS  PubMed  Google Scholar 

  78. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  79. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  80. Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem 17:149–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kathryn Abele, Ioannis Michailidis and Zafir Buraei for reading and commenting on a draft of this chapter. This work was supported by National Institutes of Health grants NS045383 and GM085234 (to J.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, M., Yu, Y., Yang, J. (2011). Structural Biology of TRP Channels. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_1

Download citation

Publish with us

Policies and ethics