Skip to main content

Toxicology of Nano-Objects: Nanoparticles, Nanostructures and Nanophases

  • Conference paper
  • First Online:
Book cover Biodefence

Abstract

The present paper discusses classification of nano-objects, which is based on their size, morphology and chemical nature. The subject of nanochemistry includes those nano-objects whose chemical properties depend on size and morphology, such as spheroidal molecules, anisotropic (2D) and isotropic (1D) nanoparticles, nano-clusters and nanophases. Nanophase is a nano-dimensional part of the microphase whose properties depend on its size. The potential health hazards of nano-objects are associated with their capability of penetrating the body through inhalation, digestion or the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kharlamov AI, Kirillova NV (2009) Fullerenes and fullerenes hydrides as products of transformation (polycondensation) of aromatic hydrocarbons. Proc Ukr Acad Sci 5:112–120

    Google Scholar 

  2. Kharlamov AI, Kirillova NV, Ushkalov LN (2006) Simultaneous growth of spheroidal and tubular carbon structures during the pyrolysis of benzene. Theor Exp Chem 42(2):90–95

    Article  CAS  Google Scholar 

  3. Kharlamov AI, Ushkalov LN,K Kirillova NV, Fomenko VV, Gubareny NI, Skripnichenko AV (2006) Synthesis of onion nanostructures of carbon at pyrolysys of aromatic hydrocarbons. Proc Ukr Acad Sci 3:97–103

    Google Scholar 

  4. Kharlamov AI, Loythenko SV,K Kirillova NV, Kaverina SV, Fomenko VV (2004) Toroidal nanostructures of carbon. Single-walled 4 -, 5 – and 6 hedrons and nanorings. Proc Ukr Acad Sci 1:95–100

    Google Scholar 

  5. Kharlamov AI, Ushkalov LM, Kirillova NV (2007) Novel method of obtaining of new type of nanotubes of vanadium oxide. Proc Ukr Acad Sci 4:148–156

    Google Scholar 

  6. Kharlamov AI, Kirillova NV, Karachevtseva LA, Kharlamova AA (2003) Low-temperature reactions between vaporizing silicon and carbon. Theor Exp Chem 39(6):374–379

    Article  CAS  Google Scholar 

  7. Kholmanov IN, Kharlamov AI, Barborini E, Lenardi C, Li Bassi A, Bottani CE, Ducati C, Maffi S, Kirillova NV, Milani P (2002) A simple method for the synthesis of silicon carbide nanorods. J Nanosci Nanotechnol 2(5):453–456

    Article  PubMed  CAS  Google Scholar 

  8. Kharlamov AI, Kirillova NV, Kaverina SV (2003) Hollow and thread-like nanostructures of boron carbide. Theor Exp Chem 39(3):141–146

    Article  Google Scholar 

  9. Kharlamov AI, Kirillova NV (2002) Gas-phase reactions of formation of silicon carbide nanofilaments from silicon and carbon powders. Theor Exp Chem 38(1):59–63

    Article  CAS  Google Scholar 

  10. Kharlamov AI, Kirillova NV, Loytchenko SV (2002) Synthesis of elongated nanostructures of silicon carbide from powdery silicon and carbon. Proc Ukr Acad Sci 10:98–105

    Google Scholar 

  11. Kharlamov AI, Kharlamova GA, Kirillova NV, Fomenko VV (2008) Persistent organic pollutants at nanotechnology and their impact on people health. In: Mehmetli E, Koumanova B (eds) The fate of persistent organic pollutants in the environment. Springer, pp 425–441

    Google Scholar 

  12. Kharlamov AI,K Kirillova NV, Zaytseva ZA (2007) Novel state of carbon: transparent thread-like anisotropic crystals. Proc Ukr Acad Sci 5:101–106

    Google Scholar 

  13. Pul Ch, Owens F (2005) Nanotechnology. Tekhnosfera, Moscow, Russia

    Google Scholar 

  14. Hoet P, Bruske-Holfeld I, Salata O (2004) Nanoparticles – known and unknown health risks. J Nanobiotech 2:12–18

    Article  Google Scholar 

  15. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  Google Scholar 

  16. Siegmann K, Siegmann HC (1997) The formation of carbon in combustion and how to quantify the impact on human health. Europhys News 28:50–57

    CAS  Google Scholar 

  17. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  PubMed  Google Scholar 

  18. Sayes CM, Fortner JD, Guo W et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  19. Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  PubMed  CAS  Google Scholar 

  20. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C- 60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364:8–17

    Article  CAS  Google Scholar 

  21. Levi N, Hantgan RR, Lively MO et al (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotech 4:14–17

    Article  Google Scholar 

  22. Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  PubMed  CAS  Google Scholar 

  23. Ostiguy C, Lapointe G, Trottier M et al (2006) Health effects of nanoparticles. Studies and research projects. IRSST 52

    Google Scholar 

  24. Zhua S, Oberdörster E, Haascha ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:5–9

    Article  Google Scholar 

  25. Markovic Z, Todorovic-Markovic B, Kleut D et al (2007) The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28(36):5437–5448

    Article  PubMed  CAS  Google Scholar 

  26. Schranda AM, Daia L, Schlager JJ et al (2007) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Relat Mater 16(12):2118–2123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kharlamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kharlamov, A. et al. (2011). Toxicology of Nano-Objects: Nanoparticles, Nanostructures and Nanophases. In: Mikhalovsky, S., Khajibaev, A. (eds) Biodefence. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0217-2_3

Download citation

Publish with us

Policies and ethics