Skip to main content

Flow Solvers and Validation

  • Chapter
  • First Online:
  • 1922 Accesses

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Up to this point, we have reviewed numerical algorithms for computing viscous incompressible flows, primarily using primitive variables along with finite difference and finite volume frameworks. The solution methods for incompressible flows are based on the assumption that the flow can be approximated by incompressible Navier–Stokes equations. Once a solution algorithm is developed, flow solvers and software procedures need to be developed to compute fluid dynamic problems. This process includes setting up the problem, solving the flow with the proper initial and boundary conditions, and then post-processing the computed results. These solutions include several levels of approximations including algorithmic, geometry-related and physical-modeling related approximations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker, C. J.: The laminar horseshoe vortex. Part II. J. Fluid Mech., 95, 346–367 (1979)

    Article  Google Scholar 

  • Collins, W. M., Dennis, S. C. R.: Flow past an impulsively started circular cylinder. J. Fluid Mech., 60, 105–127 (1973)

    Article  MATH  Google Scholar 

  • Coutanceau, M., Bouard, R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation – Part II. Unsteady flow. J. Fluid Mech., 79, 257–272 (1977)

    Google Scholar 

  • Humphrey, J. A. C., Taylor, A. M. K., Whitelaw, J. H.: Laminar flow in a square duct of strong curvature, Part III. J. Fluid Mech., 83, 509–527 (1977)

    Article  MATH  Google Scholar 

  • Kiris, C., Rogers, S. E., Kwak, D., Lee, Y.-T.: Time-accurate incompressible Navier-Stokes computations with overlapped moving grids. ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, NV, June 19–23 (1994a)

    Google Scholar 

  • Kwak, D., Chang, J. L. C., Shanks, S. P., Chakravarthy, S.: A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J., 24, No. 3, 390–396 (1986) (Original version: AIAA Paper 84-0253, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, Jan. 9–12 (1984)

    Article  MATH  Google Scholar 

  • Morkovin, M. V.: Flow around circular cylinder – a kaleidoscope of challenging fluid phenomena. In Symposium on Fully Separated Flows, ed. by Hansen, A. G., ASME, New York, pp. 102–118 (1964)

    Google Scholar 

  • Patankar, S. V., Ivanovic, M., Sparrow, E. M.: Analysis of turbulent flow and heat transfer in internally finned tubes and annuli. Int. J. Heat Mass Transf., 101, 9929–9937 (1979)

    Google Scholar 

  • Pedley, T. J., Stephanoff, K. D.: Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech., 160, 337–367 (1985)

    Article  Google Scholar 

  • Rogers, S. E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28, No. 2, 253–262 (1990) (Also, AIAA Paper 88-2583, 1988)

    Article  MATH  Google Scholar 

  • Rosenfeld, M., Kwak, D., Vinokur, M.: A fractional-step method for unsteady incompressible Navier-Stokes equations in generalized coordinate systems. J. Comput. Phys., 94, No. 1, 102–137 (1991b) (Also, AIAA Paper 88-0718, 1988)

    Article  MATH  Google Scholar 

  • Stephanoff, K. D., Pedley, T. J., Lawrence, C. J., Secomb, T. W.: Fluid flow along a channel with an asymmetric oscillating constriction. Nature, 305, 692–695 (1983)

    Article  Google Scholar 

  • Taneda, S., Honji, H.: Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30, 262–273 (1971)

    Article  Google Scholar 

  • Taylor, A. M. K. P., Whitelaw, J. H., Yianneskis, M.: Curved ducts with strong secondary motion: velocity measurements of developing of laminar and turbulent flow. J. Fluid Eng., 104, 350–359 (1982)

    Article  Google Scholar 

  • Thom, A.: The flow past circular cylinder at low speeds. Proc. R. Soc. Lond. B. Biol. Sci., Series A, 141, 651–666 (1933)

    Article  Google Scholar 

  • Van Dyke, M.: An Album of Fluid Motion, The Parabolic Press, Stanford, CA (1982)

    Google Scholar 

  • White, F. M.: Viscous Fluid Flow, McGraw-Hill, New York, p. 123 (1974)

    MATH  Google Scholar 

  • Yoshida, Y., Nomura, T.: A transient solution method for the finite element incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 5, 873–890 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Arndt, R., Maines, B.: Viscous effects in tip vortex cavitation and nucleation. Proceedings of the 20th Symposium on Naval Hydrodynamics, Santa Barbara, CA (1994)

    Google Scholar 

  • Baldwin, B. S., Barth, T. J.: A one-equation turbulence transport model for high Reynolds number wall-bounded flows. AIAA Paper 91-0610 (1991)

    Google Scholar 

  • Baldwin, B. S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78-257 (l978)

    Google Scholar 

  • Burke, R. W.: Computation of turbulent incompressible wing-body junction flow. Proceedings of the 27th Aerospace Sciences Meeting, Reno, Nevada, January 9–12, AIAA Paper 89-0279 (1989)

    Google Scholar 

  • Chow, J. S., Zilliac, G., Bradshaw, P.: Initial roll-up of a wingtip vortex. Proceedings of the Aircraft Wake Vortex Conference, Vol. II, Washington, DC, October 29–131 (1991)

    Google Scholar 

  • Dacles-Mariani, J. S., Rogers, S., Kwak, D., Zilliac, G., Chow, J.: A computational study of a wingtip vortex flowfield. Proceedings of the 24th Conference in Fluid Dynamics, AIAA Paper 93-3010 (1993)

    Google Scholar 

  • Dacles-Mariani, J., Kwak, D., Zilliac, G.: Incompressible Navier-Stokes simulation procedure for a wingtip vortex flow analysis. Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, NV, Sept. 4–8 (1995b)

    Google Scholar 

  • Dacles-Mariani, J., Kwak, D., Zilliac, G.: Accuracy assessment of a wingtip vortex flowfield in the near-field region. Proceedings of the AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 15–18 (1995c)

    Google Scholar 

  • Dickinson, S. C.: An experimental investigation of appendage-flat plate junction flow, Vol. I and II, DTNSRDC Reports 86/051, 86/052, David Taylor Research Center, Bethesda, MD (Dec. 1986)

    Google Scholar 

  • Eckerle, W. A., Langston, L. S.: Horseshoe vortex around a cylinder. Proceedings of the ASME International Gas Turbine Conference, Dusseldorf, West Germany, June 8–12 (1986)

    Google Scholar 

  • Kaul, U., Kwak, D., Wagner, C.: A computational study of saddle point separation and horseshoe vortex system. AIAA Paper 85-182 (1985)

    Google Scholar 

  • Kiehm, P., Mitra, N. K., Fiebig, M.: Numerical investigation of two- and three-dimensional confined wakes behind a circular cylinder in a channel. AIAA Paper 86-0035 (1986)

    Google Scholar 

  • Kiris, C., Kwak, D.: Numerical solution of incompressible Navier-Stokes equations using a fractional-step approach. Comp. Fluids, 30, 829–851 (2001) (Original version in AIAA Paper 96-2089)

    Google Scholar 

  • Kwak, D.: Computation of viscous incompressible flows. von Karman Institute for Fluid Dynamics, Lecture Series 1989–04 (1989) (Also NASA TM 101090, March 1989)

    Google Scholar 

  • McConnaughey, P., Cornelison, J., Barker, L.: The prediction of secondary flow in curved ducts of square cross-section. AIAA Paper 89-0276 (1989)

    Google Scholar 

  • Park, D. K.: The biofluidmechanics of arterial stenoses. M.Sc. Thesis, Lehigh University, Bethlehem, PA (1989)

    Google Scholar 

  • Peake, D. J., Tobak, M.: Three-dimensional interactions and vortical flows with emphasis on high speeds. NASA TM 81169, March (1980)

    Google Scholar 

  • Rogers, S. E., Kwak, D., Kaul, U.: On the accuracy of the pseudocompressibility method in solving the incompressible Navier-Stokes equations. AIAA Paper 85-1689 (1985)

    Google Scholar 

  • Spalart, P. R., Allmaras, S. R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)

    Google Scholar 

  • Taylor, A. M. K. P., Whitelaw, J. H., Yianneskis, M.: Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers. NASA CR 3367, January (1981)

    Google Scholar 

  • Thomas, A.: Laminar juncture flow-A visualization study. Phys. Fluids Lett., February (1987)

    Google Scholar 

  • Zilliac, G. G., Chow, J. S., Dacles-Mariani, J., Bradshaw, P.: Turbulent structure of a wingtip vortex in the near field. AIAA Paper 93-3011 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dochan Kwak .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kwak, D., Kiris, C.C. (2011). Flow Solvers and Validation. In: Computation of Viscous Incompressible Flows. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0193-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0193-9_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0192-2

  • Online ISBN: 978-94-007-0193-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics