Skip to main content

Physical Nanosystems

  • Chapter
  • 2086 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

In this chapter, certain experimental realizations of quantum information schemes are briefly discussed. Some nanosystems used for experimental implementation of quantum computation such as quantum dots, ion traps, and nuclear magnetic resonance are considered. Parametric down-conversion for producing entangled photons is described. Full exposition of recent experimental works is beyond the scope of this book, so we will discuss only some fundamental topics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atature, M., Di Giuseppe, G., Shaw, M.D., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Multi-parameter entanglement in femtosecond parametric down-conversion. Phys. Rev. A 65, 023808 (2002)

    Article  ADS  Google Scholar 

  2. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Loock, van P.: Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001)

    Article  ADS  Google Scholar 

  5. Chuang, I.L., Vandersypen, L.M.K., Xinlan, Z., Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393, 143 (1998)

    Article  ADS  Google Scholar 

  6. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 18(15), 3408–3411 (1998)

    Article  ADS  Google Scholar 

  7. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  8. Cory, D.G., Price, M.D., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. quant-ph/9709001 (1997)

  9. Delerue, C., Lannoo, M.: Nanostructures: Theory and Modelling. Springer, Berlin (2004)

    Google Scholar 

  10. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond., Ser. A 400, 96–117 (1985)

    ADS  Google Scholar 

  11. Di Giuseppe, G., Atature, M., Shaw, M.D., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity. quant-ph/0112140 (2001)

  12. Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992)

    Google Scholar 

  13. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ekimov, A.I., Onushchenko, A.A.: Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–349 (1981)

    ADS  Google Scholar 

  15. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  16. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  17. Haeffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jacak, L., Hawrylak, P., Wjs, A.: Quantum Dots. Springer, Berlin (1998)

    Google Scholar 

  19. Jones, J.A., Mosca, M.: Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648 (1998)

    Article  ADS  Google Scholar 

  20. Lloyd, S.: Universe as quantum computer, how decoherence leads to complexity. Complexity 3(1), 32–35 (1997)

    Article  MathSciNet  Google Scholar 

  21. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  22. Michalet, X., Pinaud, F.F., Bentolila, L.A., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)

    Article  ADS  Google Scholar 

  23. Mosley, P.J., Christ, A., Eckstein, A., Silberhorn, C.: Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion. Phys. Rev. Lett. 103, 233901 (2009)

    Article  ADS  Google Scholar 

  24. Mueller, M., Liang, L.-M., Lesanovsky, I., Zoller, P.: Trapped Rydberg ions: from spin chains to fast quantum gates. New J. Phys. 10, 093009 (2008)

    Article  ADS  Google Scholar 

  25. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–491 (2009)

    Article  ADS  Google Scholar 

  26. Oosterkamp, T.H., Fujisawa, T., van der Wiel, W.G., Ishibashi, K., Hijman, R.V., Tarucha, S., Kouwenhoven, L.P.: Microwave spectroscopy on a quantum-dot molecule. cond-mat/9809142 (1998)

  27. Ospelkaus, C., Langer, C.E., Amini, J.M., Brown, K.R., Leibfried, D., Wineland, D.J.: Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008)

    Article  ADS  Google Scholar 

  28. Pauli, W.: Theory of Relativity. Pergamon, Elmsford (1958)

    MATH  Google Scholar 

  29. Preskill, J.: Battling decoherence: the fault-tolerant quantum computer. Phys. Today 52, 24–30 (1999)

    Article  Google Scholar 

  30. Roos, C., Zeiger, T., Rohde, H., Naegerl, H.C., Eschner, J., Leibfried, D., Schmidt-Kaler, F., Blatt, R.: Quantum state engineering on an optical transition and decoherence in a Paul trap. quant-ph/9909038 (1999)

  31. Schmelcher, P., Cederbaum, L.S.: Magnetic field induced two-body phenomena in atoms. Comments At. Mol. Phys., Part D 2, 123 (2000)

    Google Scholar 

  32. Slichter, C.P.: Principles of Magnetic Resonance. Springer, Berlin (1991)

    Google Scholar 

  33. Sobelman, I.I.: Atomic Spectra and Radiative Transitions. Springer, Berlin (1991)

    Google Scholar 

  34. Treiber, A., Poppe, A., Hentschel, M., Ferrini, D., Lorünser, T., Querasser, E., Matyus, T., Hübel, H., Zeilinger, A.: Fully automated entanglement-based quantum cryptography system for telecom fiber networks. New J. Phys. 11, 045013 (2009)

    Article  ADS  Google Scholar 

  35. van Enk, S.J., Kimble, H.J.: On the classical character of control fields in quantum information processing. Quantum Inf. Comput. 2(1), 1–13 (2002)

    MathSciNet  Google Scholar 

  36. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Cleve, R., Chuang, I.L.: Experimental realization of an order-finding algorithm with an NMR quantum computer. Phys. Rev. Lett. 85(25), 5452–5455 (2000)

    Article  ADS  Google Scholar 

  37. Varcoe, B.T.H., Sang, R., MacGillivray, W.R., Standage, M.C.: Quantum state reconstruction using atom optics. quant-ph/9910024 (1999)

  38. Volovich, I.V.: Models of quantum computers and decoherence problem. In: International Conference on Quantum Information, Meijo University, Nagoya, 4–8 Nov. Proc. of the Conference, pp. 211–224. World Scientific, Singapore (1999)

    Google Scholar 

  39. Volovich, I.V.: Atomic quantum computer. In: Physics of Elementary Particles and Atomic Nuclei, Dubna, vol. 31, pp. 133–136 (2000)

    Google Scholar 

  40. Xavier, G.B., Walenta, N., Vilela de Faria, G., Temporao, G.P., Gisin, N., Zbinden, H., von der Weid, J.P.: Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation. New J. Phys. 11, 045015 (2009), 5 pp.

    Article  ADS  Google Scholar 

  41. Yang, J., Bao, X.-H., Zhang, H., Chen, S., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Experimental quantum teleportation and multi-photon entanglement via interfering narrowband photon sources. Phys. Rev. A 80, 042321 (2009)

    Article  ADS  Google Scholar 

  42. Ye, J., Vernooy, D.W., Kimble, H.J.: Trapping of single atoms in cavity QED. quant-ph/9908007 (1999)

  43. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.-W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ohya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohya, M., Volovich, I. (2011). Physical Nanosystems. In: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0171-7_19

Download citation

Publish with us

Policies and ethics