Skip to main content

Tidal Sands of the Bahamian Archipelago

  • Chapter
  • First Online:

Abstract

Tidal sands consisting entirely of carbonate sediments are ubiquitous in the Bahamian archipelago. These sands include a diversity of sediment types, including ooids, peloids, and skeletal fragments. Sands transported by tides, waves, and currents create barforms in tidal sand complexes with a range of shapes and sizes. These features are shaped by, and in turn modify, tidal currents that move on and off the shallow platforms; waves and wave-driven currents play a subordinate but locally important role in their genesis and architecture. Collectively, barforms make up shallow shoal complexes. These shoal complexes are focused in areas with elevated tidal currents (locally in excess of 200 cm/s) near platform margins, and can exceed 10 km in width. The diversity of barforms and shoal morphology evident in Holocene examples is reflected in the stratigraphic record of numerous ancient tidal sand shoals, with preservation favored by the early cementation ubiquitous in these carbonate systems.

Submitted: 3 June 2010

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agassiz A (1896) The elevated reef of Florida. Bull Mus Comp Zool 28:1–62

    Google Scholar 

  • Ashley GM (1990) Classification of large-scale sub-aqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172

    Google Scholar 

  • Aurell M, McNeill DF, Guyomard T, Kindler P (1995) Pleistocene shallowing-upward sequences in New Providence, Bahamas: signature of high-frequency sea-level fluctuations in shallow carbonate platforms. J Sediment Res B65:170–182

    Google Scholar 

  • Ball MM (1967) Carbonate sand bodies of Florida and the Bahamas. J Sediment Petrol 37:556–591

    Google Scholar 

  • Bathurst RGC (1967) Oolitic films on low energy carbonate sand grains, Bimini Lagoon, Bahamas. Mar Geol 5:89-109.

    Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis, vol 12, Developments in sedimentology. Elsevier, Amsterdam, 658 pp

    Google Scholar 

  • Beach DK, Ginsburg RN (1980) Facies succession of Pliocene-Pleistocene carbonates, northwestern Great Bahama Bank. Am Assoc Petrol Geol Bull 64:1634–1642

    Google Scholar 

  • Braithwaite CJR (1973) Settling behaviour related to sieve analysis of skeletal sands. Sedimentology 20:251–263

    Article  Google Scholar 

  • Brown MA, Archer AA, Kvale EP (1990) Neap-spring tidal cyclicity in laminated carbonate channel-fill deposits and its implications; Salem Limestone (Mississippian), south-central Indiana, U.S.A. J Sediment Res 60:152–159

    Google Scholar 

  • Budd DA (1984) Freshwater diagenesis of Holocene ooid sands, Schooner Cays, Bahamas. Unpublished Ph.D. dissertation, University of Texas, Austin, 491 p

    Google Scholar 

  • Carney C, Boardman MR (1993) Trends in sedimentary microfabrics of ooid tidal channels and deltas. In: Rezak R, Lavoie DL (eds) Frontiers in sedimentary geology: carbonate microfabrics. Springer, New York, pp 29–39

    Google Scholar 

  • Carr DD (1973) Geometry and origin of oolite bodies in the Ste. Genevieve Limestone (Mississippian) in the Illinois basin. Indiana Geol Surv Bulletin 48, 81 p

    Google Scholar 

  • Caston VND (1972) Linear sand banks in the southern North Sea. Sedimentology 18:63–78

    Article  Google Scholar 

  • Cavallo LJ, Smosna R (1997) Predicting porosity distribution within oolitic bars in J.A. Kupecz, J. Gluyas, and S. Block (eds.), reservoir quality prediction in sandstones and carbonates. Am Assoc Petrol Geol Mem 69:211–229

    Google Scholar 

  • Cayeux L (1935) Les Roches Sedimentares de France. Roches Carbonatees Masson, Paris, 463 p

    Google Scholar 

  • Cruz FE (2008) Processes, patterns and petrophysical heterogeneity of grainstone shoals at Ocean Cay, Western Great Bahama Bank. Unpublished PhD dissertation, University of Miami

    Google Scholar 

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and barforms. In: Perillo GM (ed) Geomorphology and sedimentology of Estuaries, vol 53, Developments in sedimentology. Elsevier, Amsterdam, pp 359–422

    Chapter  Google Scholar 

  • Davies PJ, Bubela B, Ferguson J (1978) The formation of ooids. Sedimentology 25:703–729

    Article  Google Scholar 

  • Deelman JC (1978) Experimental ooids and grapestones: carbonate aggregates and their origin. J Sediment Petrol 48:503–512

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Dravis J (1979) Rapid and widespread generation of recent oolitic hardgrounds on a high energy Bahamian platform, Eleuthera Bank, Bahamas. J Sediment Petrol 49:195–208

    Google Scholar 

  • Duguid SMA, Kyser TK, James NP, Rankey EC (2010) Microbes and ooids. J Sediment Res 80:236–251

    Article  Google Scholar 

  • Dyer K, Huntey DA (1999) The origin, classification, and modeling of sand banks and ridges. Cont Shelf Res 19:1285–1330

    Article  Google Scholar 

  • Enos P (1974) Surface sediment facies map of the Florida-Bahamas Plateau. Geol Soc Am Map Series MC-5, Boulder, CO, 5 p

    Google Scholar 

  • Evans CC (1987) The relationship between the topography and internal structure of an ooid shoal sand complex: the upper Pleistocene Miami Limestone, p 18–41. In: Maurasse FJ-MR (ed) Symposium on South Florida geology, Miami Geological Society, Miami, 233 pp

    Google Scholar 

  • Folk RL, Lynch FL (2001) Organic matter, putative nannobacteria, and the formation of ooids and hardgrounds. Sedimentology 48:215–229

    Article  Google Scholar 

  • French JA, Watney WL (1993) Stratigraphy and depositional setting of the lower Missourian (Pennsylvanian) Bethany Falls and Mound Valley limestones, analogues for age-equivalent ooid grainstone reservoirs. Kansas Geological Survey Bulletin, Kansas, pp 27–39

    Google Scholar 

  • Ginsburg RN, Shinn EA (1993) Preferential distribution of reefs in the Florida reef tract: the past is the key to the present, Global Aspects of Coral Reefs: Health, Hazards, and History. University of Miami Press, Miami, pp H21–H26

    Google Scholar 

  • Gonzalez R, Eberli GP (1997) Sediment transport and sedimentary structures in a carbonate tidal inlet; Lee Stocking Island, Exuma Islands, Bahamas. Sedimentology 44:1015–1030

    Article  Google Scholar 

  • Grammer M, Crescini CM, McNeill DF, Taylor LH (1999) Quantifying rates of syndepositional marine cementation in deeper platform environments – new insights into a fundamental process. J Sediment Res 69:202–207

    Google Scholar 

  • Grasmueck M, Weger RJ (2002) 3D GPR reveals complex internal structure of Pleistocene oolitic sandbar. Lead Edge 21:634–639

    Article  Google Scholar 

  • Halley RB, Evans CC (1983) The Miami Limestone: a guide to selected outcrops and their interpretation. Miami Geological Society, Coral Gables, 67 pp

    Google Scholar 

  • Halley RB, Harris PM (1979) Fresh-water cementation of a 1,000-year old oolite. J Sediment Petrol 49:969–987

    Google Scholar 

  • Halley RB, Shinn EA, Hudson JH, Lidz BH (1977) Pleistocene barrier bar seaward of ooid shoal complex near Miami, Florida. Am Assoc Petrol Geol Bull 61:519–526

    Google Scholar 

  • Halley RB, Harris PM, Hine AC (1983) Bank margin environments. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol Mem 33:463–506

    Google Scholar 

  • Handford CR (1988) Review of carbonate sand-belt deposition of ooid grainstones and application to Mississippian reservoir, Damme Field, southwestern Kansas. Am Assoc Petrol Geol Bull 72:1184–1199

    Google Scholar 

  • Harris PM (1979) Facies anatomy and diagenesis of a Bahamian ooid shoal, vol VII, Sedimenta. University of Miami, Miami, 163 pp

    Google Scholar 

  • Harris PM, Weber LJ (eds) (2006) Giant hydrocarbon reservoirs of the world: from rocks to reservoir characterization and modeling. Am Assoc Petrol Geol Memoir 88, 469 p

    Google Scholar 

  • Hayes MO (1975) Morphology of sand accumulation in estuaries and introduction to the symposium. In: Cronin LE (ed) Estuarine research. Academic, New York, pp 3–22

    Google Scholar 

  • Hearty PJ, Kindler P (1993) New perspectives on Bahamian geology. J Coast Res 9:577–594

    Google Scholar 

  • Hillgärtner H, Dupraz C, Hug W (2001) Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology 48:117–131

    Article  Google Scholar 

  • Hine AC (1977) Lily Bank, Bahamas: history of an active oolite sand shoal. J Sediment Petrol 47:1554–1581

    Google Scholar 

  • Hine AC, Neumann AC (1977) Shallow carbonate-bank-margin growth and structure, Little Bahama Bank, Bahamas. Am Assoc Petrol Geol Bull 61:376–406

    Google Scholar 

  • Hine AC, Wilber RJ, Neumann AC (1981) Carbonate sand bodies along contrasting shallow bank margins facing open seaways in northern Bahamas. Am Assoc Petrol Geol Bull 65:261–290

    Google Scholar 

  • Hoffmeister JE, Stockman KW, Multer HG (1967) Miami Limestone of Florida and its recent Bahamian counterpart. Geol Soc Am Bull 78:75–190

    Article  Google Scholar 

  • Houbolt JJHC (1968) Recent sediments in the Southern Bight of the North Sea. Geol Mijnb 47:245–273

    Google Scholar 

  • Illing LV (1954) Bahamian calcareous sands. Am Assoc Petrol Geol Bull 38:1–95

    Google Scholar 

  • Imbrie J, Buchanan H (1965) Sedimentary structures in modern carbonate sands of the Bahamas. In: Middleton GV (ed) Primary sedimentary structures and their hydrodynamic interpretations. Soc Econ Paleontol Mineral Spec Publ 12:149–172

    Google Scholar 

  • James NP (1983) Reef environment (Chap. 8). In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol Memoir 33:346–462

    Google Scholar 

  • Keith BD, Zuppann CW (eds) (1993) Mississippian oolites and modern analogs. American Association of Petroleum Geologists Studies in Geology, Tulsa, 35

    Google Scholar 

  • Kench PS, McLean RF (1996) Hydraulic characteristics of bioclastic deposits: new possibilities for environmental interpretation using settling velocity fractions. Sedimentology 43:561–570

    Article  Google Scholar 

  • Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park G-H, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605. doi:10.1029/2006GL027207

    Article  Google Scholar 

  • Neal A, Grasmueck M, McNeill DF, Viggiano DA, Eberli GP (2008) Full-resolution 3D radar stratigraphy of complex oolitic sedimentary architecture: Miami Limestone, Florida, U.S.A. J Sediment Res 78:638–653

    Article  Google Scholar 

  • Neumann AC, Macintyre I (1985) Reef response to sea level rise: keep-up, catch-up or give-up. In: Proceedings of the 5th international coral reef congress, Tahiti, 27 May–1 June 1985, vol 3, pp 105–110

    Google Scholar 

  • Neumann CJ, Cry GW, Caso EE, Jarvinen BR (1978) Tropical cyclones of the North Atlantic Ocean, 1871–1977. National Climatic Center, Asheville, 170 p

    Google Scholar 

  • Newell ND, Rigby JK (1957) Geological studies on the Great Bahama Bank. In: Le Blanc RJ, Breeding JG (eds) Regional aspects of carbonate deposition. Soc Econ Paleontol Miner Spec Publ 5:15–72

    Google Scholar 

  • Newell ND, Imbrie J, Purdy EG, Thurber DL (1959) Organism communities and bottom facies, Great Bahama Bank. Bull Am Mus Natl Hist 117:177–228

    Google Scholar 

  • Newell ND, Purdy EG, Imbrie J (1960) Bahamian oolitic sand. J Geol 68:481–497

    Article  Google Scholar 

  • Off T (1963) Rhythmic linear sand bodies caused by tidal currents. Am Assoc Petrol Geol Bull 47:324–341

    Google Scholar 

  • Opdyke BN, Wilkinson BH (1990) Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeogr Palaeoclim Palaeoecol 78:1–14

    Article  Google Scholar 

  • Palmer MS (1979) Holocene facies geometry of the leeward bank margin, Tongue of the Ocean, Bahamas. MS thesis, University of Miami, Miami, FL, 199 p

    Google Scholar 

  • Prager EJ, Southard JB, Vivoni-Gallart ER (1996) Experiments on the entrainment threshold of well-sorted and poorly sorted carbonate sands. Sedimentology 43:33–40

    Article  Google Scholar 

  • Purdy EG (1961) Bahamian oolite shoals. In: Peterson JA, Osmond JC (eds) Geometry of sandstone bodies. American Association of Petroleum Geologists Studies in Geology, Tulsa, pp 53–63

    Google Scholar 

  • Purdy EG (1963) Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. J Geol 71:472–497

    Article  Google Scholar 

  • Rankey EC, Reeder SL (2009) Holocene ooids of Aitutaki Atoll, Cook Islands, South Pacific. Geology 37:971–974

    Article  Google Scholar 

  • Rankey EC, Reeder SL (2010) Controls on platform-scale patterns of surface sediments, shallow Holocene platforms, Bahamas. Sedimentology 57:1545–1565

    Article  Google Scholar 

  • Rankey EC, Reeder SL (2011) Holocene oolitic marine sand complexes of the Bahamas. J Sediment Res 81:97-117

    Google Scholar 

  • Rankey EC, Riegl B, Steffen K (2006) Form and function in a tidally dominated ooid shoal, Bahamas. Sedimentology 53:1191–1210

    Article  Google Scholar 

  • Rankey EC, Reeder SL, Correa TBS (2008) Geomorphology and sedimentology of Ambergris ooid shoal, Caicos Platform. In: Morgan WA, Harris PM (eds) Developing models and analogs for isolated carbonate platforms – Holocene and Pleistocene carbonates of Caicos Platform, British West Indies SEPM (Society for Sedimentary Geology) Core workshop, vol 22, pp 127–132

    Google Scholar 

  • Reeder SL, Rankey EC (2008) Interactions between tidal flows and ooid shoals, northern Bahamas. J Sediment Res 78:175–186

    Article  Google Scholar 

  • Reeder SL, Rankey EC (2009a) An integrated field, remote sensing, and modeling study examining the impact of Hurricanes Frances and Jeanne on carbonate systems, Bahamas. In: Swart PK, Eberli GP, McKenzie JA (eds) Perspectives in carbonate geology: a tribute to the career of Robert Nathan Ginsburg. IAS special publication 41. Wiley-Blackwell, Oxford, pp 75–90

    Google Scholar 

  • Reeder SL, Rankey EC (2009b) Controls on morphology and sedimentology of carbonate tidal deltas, Abacos, Bahamas. Mar Geol. http://dx.doi.org/10.1016/j.margeo.2009.09.010

  • Rich JL (1948) Submarine sedimentary features on Bahama Banks and their bearing on distribution patterns of lenticular oil sands. Am Assoc Petrol Geol Bull 32:767–779

    Google Scholar 

  • Roberts HH, Rouse LJ Jr, Walker ND, Hudson JH (1982) Cold-water stress in Florida Bay and northern Bahamas – a product of winter cold-air outbreaks. J Sediment Petrol 52:145–155

    Google Scholar 

  • Roberts HH, Wilson PA, Lugo-Fernandez A (1992) Biologic and geologic responses to physical processes: examples from modern reef systems of the Caribbean-Atlantic region. Cont Shelf Res 12:809–834

    Article  Google Scholar 

  • Sedimentology Seminar (1966) Cross-bedding in the Salem Limestone of central Indiana. Sedimentology 6:95–114

    Article  Google Scholar 

  • Smith NP (1995) On long-term net flow over Great Bahama Bank. J Phys Oceanogr 25:679–684

    Article  Google Scholar 

  • Society R (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London, pp 1–55, Policy Document 12/05

    Google Scholar 

  • Sumner DY, Grotzinger JP (1993) Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. J Sediment Petrol 63:974–982

    Google Scholar 

  • Taft WH, Arrington F, Haimovitz A, MacDonald C, Woolheater C (1968) Lithification of modern marine carbonate sediments at Yellow Bank, Bahamas. Bull Mar Sci 18:762–828

    Google Scholar 

  • Tucker ME, Wright VP (1996) Carbonate sedimentology. Blackwell Science, Oxford

    Google Scholar 

  • Van Veen J (1936) Onderzoekingen in de Hoofden in verband met de gesteldheid previous termvannext term de Nederlandse kust. (Measurements in the Straits of Dover, and their relation to the Netherlands coast). Algemeene Landsdrukkerij, The Hague, 252 pp

    Google Scholar 

  • Wanless HR, Tedesco LP (1993) Comparison of oolitic sand bodies generated by tidal vs. wind-wave agitation. In: Keith BD, Zuppan ZW (eds) Mississippian oolites and modern analogs. Am Assoc Petrol Geol Stud Geol 35:199–225

    Google Scholar 

  • Wanless HR, Burton EA, Dravis JJ (1981) Hydrodynamics of carbonate fecal pellets. J Sediment Petrol 51:27–36

    Google Scholar 

  • Wanless HR, Tedesco LP, Rossinsky V, Dravis JJ (1989) Carbonate environments and sequences of Caicos Platform with an introductory evaluation of South Florida. American Geophysical Union, 28th international Geological congress field trip guidebook T374, 75 pp

    Google Scholar 

  • Wood LJ (2004) Predicting tidal sand reservoir architecture using data from modern and ancient depositional systems. In: Grammer MG, Harris PM, Eberli GP (eds) Integration of outdrop and modern analogs in reservoir modeling. Am Assoc Petrol Geol Mem 80:45–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene C. Rankey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rankey, E.C., Reeder, S.L. (2012). Tidal Sands of the Bahamian Archipelago. In: Davis Jr., R., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0123-6_20

Download citation

Publish with us

Policies and ethics