Skip to main content

Basic Methods for Computing Special Functions

  • Conference paper

Abstract

This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://mathworld.wolfram.com/.

  2. 2.

    http://en.wikipedia.org/.

  3. 3.

    The “Devil’s invention” refers to a quote from Niels Hendrik Abel (1828), who claimed “Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.”

  4. 4.

    This terminology is not the same in all branches of applied mathematics and mathematical physics: sometimes one sees a complete interchange of the names ‘Stokes line’ and ‘anti-Stokes line’.

  5. 5.

    http://www.moshier.net.

  6. 6.

    http://www.netlib.org/.

  7. 7.

    http://gams.nist.gov/Classes.html.

  8. 8.

    http://functions.unican.es.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. US Printing Office (1964)

    Google Scholar 

  2. Airey, J.R.: The “converging factor” in asymptotic series and the calculation of Bessel, Laguerre and other functions. Philos. Mag. 24, 521–552 (1937)

    Google Scholar 

  3. Alhargan, F.A.: Algorithm 804: subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Softw. 26(3), 408–414 (2000)

    Article  MathSciNet  Google Scholar 

  4. Alhargan, F.A.: Algorithm 855: subroutines for the computation of Mathieu characteristic numbers and their general orders. ACM Trans. Math. Softw. 32(3), 472–484 (2006)

    Article  MathSciNet  Google Scholar 

  5. Amos, D.E.: Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 12(3), 265–273 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, G.A. Jr.: The theory and application of the Padé approximant method. In: Advances in Theoretical Physics, vol. 1, pp. 1–58. Academic Press, New York (1965)

    Google Scholar 

  7. Baker, G.A. Jr.: Essentials of Padé Approximants. Academic Press, New York/London (1975). [A subsidiary of Harcourt Brace Jovanovich, Publishers]

    MATH  Google Scholar 

  8. Baker, G.A. Jr., Graves-Morris, P.: Padé Approximants, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 59. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  9. Baker, L.: C Mathematical Function Handbook. Programming Tools For Engineers and Scientists. McGraw-Hill, New York (1992)

    Google Scholar 

  10. Bhattacharya, R., Roy, D., Bhowmick, S.: Rational interpolation using Levin-Weniger transforms. Comput. Phys. Commun. 101(3), 213–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bickley, W.G., Comrie, L.J., Miller, J.C.P., Sadler, D.H., Thompson, A.J.: Bessel Functions. Part II. Functions of Positive Integer Order. British Association for the Advancement of Science, Mathematical Tables, vol. X. University Press, Cambridge (1952)

    MATH  Google Scholar 

  12. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. SIAM, Philadelphia (2004). A study in high-accuracy numerical computing, With a foreword by David H. Bailey

    Book  MATH  Google Scholar 

  13. Boyd, J.P.: The devil’s invention: Asymptotic, superasymptotic and hyperasymptotic series. Acta Appl. Math. 56(1), 1–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezinski, C.: A Bibliography on Continued Fractions, Padé Approximation, Sequence Transformation and Related Subjects. Prensas Universitarias de Zaragoza, Zaragoza (1991)

    Google Scholar 

  15. Brezinski, C.: History of Continued Fractions and Padé Approximants. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  16. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122(1–2), 1–21 (2000). Numerical analysis 2000, Vol. II: Interpolation and extrapolation

    Article  MathSciNet  MATH  Google Scholar 

  17. Brezinski, C., Redivo-Zaglia, M.: Extrapolation Methods. Theory and Practice. Studies in Computational Mathematics, vol. 2. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  18. Carlson, B.C.: Special Functions of Applied Mathematics. Academic Press, New York (1977). [Harcourt Brace Jovanovich Publishers]

    MATH  Google Scholar 

  19. Carlson, B.C.: Computing elliptic integrals by duplication. Numer. Math. 33(1), 1–16 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carlson, B.C.: Numerical computation of real or complex elliptic integrals. Numer. Algorithms 10(1–2), 13–26 (1995). Special functions (Torino, 1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carlson, B.C., FitzSimons, J.: Reduction theorems for elliptic integrals with the square root of two quadratic factors. J. Comput. Appl. Math. 118(1–2), 71–85 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chatterjee, S., Roy, D.: A class of new transforms tailored for the hypergeometric series. Comput. Phys. Commun. 179(8), 555–561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Clarkson, P.A., Mansfield, E.L.: The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity 16(3), R1–R26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9(51), 118–120 (1955)

    MathSciNet  MATH  Google Scholar 

  25. Clenshaw, C.W.: The numerical solution of linear differential equations in Chebyshev series. Proc. Camb. Philos. Soc. 53, 134–149 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Clenshaw, C.W.: Chebyshev Series for Mathematical Functions. National Physical Laboratory Mathematical Tables, vol. 5. Her Majesty’s Stationery Office, London (1962). Department of Scientific and Industrial Research

    MATH  Google Scholar 

  27. Cody, W.J.: A survey of practical rational and polynomial approximation of functions. SIAM Rev. 12(3), 400–423 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Colavecchia, F.D., Gasaneo, G.: f1: a code to compute Appell’s F 1 hypergeometric function. Comput. Phys. Commun. 157(1), 32–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of Continued Fractions for Special Functions. Springer, New York (2008). With contributions by Franky Backeljauw and Catherine Bonan-Hamada, Verified numerical output by Stefan Becuwe and Cuyt

    MATH  Google Scholar 

  30. Deaño, A., Segura, J., Temme, N.M.: Identifying minimal and dominant solutions for Kummer recursions. Math. Comput. 77(264), 2277–2293 (2008)

    Article  MATH  Google Scholar 

  31. DiDonato, A.R., Hershey, A.V.: New formulas for computing incomplete elliptic integrals of the first and second kind. J. Assoc. Comput. Mach. 6, 515–526 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dingle, R.B.: Asymptotic expansions and converging factors. I. General theory and basic converging factors. Proc. R. Soc. Lond. Ser. A 244, 456–475 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. Erricolo, D.: Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Softw. 32(4), 622–634 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fabijonas, B.R.: Algorithm 838: Airy functions. ACM Trans. Math. Softw. 30(4), 491–501 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fabijonas, B.R., Lozier, D.W., Olver, F.W.J.: Computation of complex Airy functions and their zeros using asymptotics and the differential equation. ACM Trans. Math. Softw. 30(4), 471–490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Forrey, R.C.: Computing the hypergeometric function. J. Comput. Phys. 137(1), 79–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9(1), 24–82 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gautschi, W.: A computational procedure for incomplete gamma functions. ACM Trans. Math. Softw. 5(4), 466–481 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gautschi, W.: Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42(1), 110–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  41. Gil, A., Segura, J.: Evaluation of Legendre functions of argument greater than one. Comput. Phys. Commun. 105(2–3), 273–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gil, A., Segura, J.: A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Commun. 108(2–3), 267–278 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gil, A., Segura, J.: Evaluation of toroidal harmonics. Comput. Phys. Commun. 124, 104–122 (2000)

    Article  MATH  Google Scholar 

  44. Gil, A., Segura, J.: DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics. Comput. Phys. Commun. 139(2), 186–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gil, A., Segura, J.: Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41(3), 827–855 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gil, A., Segura, J., Temme, N.M.: Computing toroidal functions for wide ranges of the parameters. J. Comput. Phys. 161(1), 204–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gil, A., Segura, J., Temme, N.M.: On nonoscillating integrals for computing inhomogeneous Airy functions. Math. Comput. 70(235), 1183–1194 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Gil, A., Segura, J., Temme, N.M.: Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions. ACM Trans. Math. Softw. 28(3), 325–336 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gil, A., Segura, J., Temme, N.M.: Algorithm 822: GIZ, HIZ: two Fortran 77 routines for the computation of complex Scorer functions. ACM Trans. Math. Softw. 28(4), 436–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gil, A., Segura, J., Temme, N.M.: Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30(1), 11–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gil, A., Segura, J., Temme, N.M.: Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Softw. 30(2), 159–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gil, A., Segura, J., Temme, N.M.: Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Softw. 30(2), 145–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gil, A., Segura, J., Temme, N.M.: The ABC of hyper recursions. J. Comput. Appl. Math. 190(1–2), 270–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  55. Gil, A., Segura, J., Temme, N.M.: Computing the conical function \(P^{\mu}_{-1/2+i\tau}(x)\). SIAM J. Sci. Comput. 31(3), 1716–1741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gil, A., Segura, J., Temme, N.M.: Fast and accurate computation of the Weber parabolic cylinder function w(a,x) (2009). Submitted to IMA J. Numer. Anal.

    Google Scholar 

  57. Gil, A., Segura, J., Temme, N.M.: Algorithm 850: Real parabolic cylinder functions U(a,x), V(a,x). ACM Trans. Math. Softw. 32(1), 102–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Gil, A., Segura, J., Temme, N.M.: Computing the real parabolic cylinder functions U(a,x), V(a,x). ACM Trans. Math. Softw. 32(1), 70–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gil, A., Segura, J., Temme, N.M.: Numerically satisfactory solutions of hypergeometric recursions. Math. Comput. 76(259), 1449–1468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221–230 (1969). Loose microfiche suppl. A1–A10

    Article  MathSciNet  MATH  Google Scholar 

  61. Grad, J., Zakrajšek, E.: Method for evaluation of zeros of Bessel functions. J. Inst. Math. Appl. 11, 57–72 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Graffi, S., Grecchi, V.: Borel summability and indeterminacy of the Stieltjes moment problem: Application to the anharmonic oscillators. J. Math. Phys. 19(5), 1002–1006 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  63. Graves-Morris, P.R., Roberts, D.E., Salam, A.: The epsilon algorithm and related topics. J. Comput. Appl. Math. 122(1–2), 51–80 (2000). Numerical analysis 2000, vol. II: Interpolation and extrapolation

    Article  MathSciNet  MATH  Google Scholar 

  64. Hart, J.F., Cheney, E.W., Lawson, C.L., Maehly, H.J., Mesztenyi, C.K., Rice, J.R., Thacher, H.C. Jr., Witzgall, C.: Computer Approximations. SIAM Ser. in Appl. Math. Wiley, New York (1968)

    MATH  Google Scholar 

  65. Homeier, H.H.H.: Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 122(1–2), 81–147 (2000). Numerical analysis 2000, Vol. II: Interpolation and extrapolation

    Article  MathSciNet  MATH  Google Scholar 

  66. Huber, T., Maître, D.: HypExp 2, expanding hypergeometric functions about half-integer parameters. Comput. Phys. Commun. 178(10), 755–776 (2008)

    Article  MATH  Google Scholar 

  67. Ikebe, Y.: The zeros of regular Coulomb wave functions and of their derivatives. Math. Comput. 29, 878–887 (1975)

    MathSciNet  MATH  Google Scholar 

  68. Inghoff, T., Fritzsche, S., Fricke, B.: Maple procedures for the coupling of angular momenta. IV: Spherical harmonics. Comput. Phys. Commun. 139(3), 297–313 (2001)

    Article  MATH  Google Scholar 

  69. Johnson, J.H., Blair, J.M.: REMES2—a Fortran program to calculate rational minimax approximations to a given function. Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario (1973)

    Google Scholar 

  70. Kodama, M.: Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Softw. 34(4), Art. 22, 21 (2008)

    Google Scholar 

  71. Levin, D.: Development of non-linear transformations of improving convergence of sequences. Int. J. Comput. Math. 3, 371–388 (1973)

    Article  MATH  Google Scholar 

  72. Linhart, J.M.: Algorithm 885: Computing the logarithm of the normal distribution. ACM Trans. Math. Softw. 35(3), Art. 20 (2008)

    Google Scholar 

  73. Lozier, D.W., Olver, F.W.J.: Airy and Bessel functions by parallel integration of ODEs. In: Sincovec, R.F., Keyes, D.E., Leuze, M.R., Petzold, L.R., Reed, D.A. (eds.) Parallel Processing for Scientific Computing. Proceedings of the Sixth SIAM Conference, vol. II, pp. 530–538. SIAM, Philadelphia (1993)

    Google Scholar 

  74. Lozier, D.W., Olver, F.W.J.: Numerical evaluation of special functions. In: Mathematics of Computation 1943–1993: A Half-century of Computational Mathematics, Vancouver, BC, 1993. Proc. Sympos. Appl. Math., vol. 48, pp. 79–125. Am. Math. Soc., Providence (1994). Updates are available at http://math.nist.gov/mcsd/Reports/2001/nesf/

    Chapter  Google Scholar 

  75. Luke, Y.L.: The Special Functions and Their Approximations II. Mathematics in Science and Engineering, vol. 53. Academic Press, New York (1969)

    MATH  Google Scholar 

  76. Luke, Y.L.: Mathematical Functions and Their Approximations. Academic Press, New York (1975)

    MATH  Google Scholar 

  77. MacLeod, A.J.: An instability problem in Chebyshev expansions for special functions. ACM SigNum Newslett. 28(2), 2–7 (1993)

    Article  MathSciNet  Google Scholar 

  78. Maino, G., Menapace, E., Ventura, A.: Computation of parabolic cylinder functions by means of a Tricomi expansion. J. Comput. Phys. 40(2), 294–304 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  79. Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer Tracts in Natural Philosophy, vol. 13. Springer, New York (1967). Expanded translation from the German edition. Translated by Larry L. Schumaker

    Book  MATH  Google Scholar 

  80. Michel, N.: Precise Coulomb wave functions for a wide range of complex l, η and z. Comput. Phys. Commun. 176, 232–249 (2007)

    Article  MATH  Google Scholar 

  81. Michel, N., Stoitsov, M.V.: Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Commun. 178, 535–551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Morris, A.H. Jr.: NSWC library of mathematical subroutines. Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA (1993)

    Google Scholar 

  83. Lloyd Baluk Moshier, S.: Methods and Programs for Mathematical Functions. Ellis Horwood Series: Mathematics and Its Applications. Ellis Horwood, Chichester (1989)

    MATH  Google Scholar 

  84. Murli, A., Rizzardi, M.: Algorithm 682: Talbot’s method for the Laplace inversion problem. ACM Trans. Math. Softw. 16(2), 158–168 (1990)

    Article  MATH  Google Scholar 

  85. Noble, C.J.: Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Commun. 159(1), 55–62 (2004)

    Article  Google Scholar 

  86. Olde Daalhuis, A.B., Olver, F.W.J.: On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40(3), 463–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  87. Paris, R.B., Wood, A.D.: Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31(1–2), 21–28 (1995)

    MathSciNet  MATH  Google Scholar 

  88. Powell, M.J.D.: On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9(4), 404–407 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  89. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++. Cambridge University Press, Cambridge (2002). The art of scientific computing, 2nd edition, updated for C++

    Google Scholar 

  90. Rice, J.R.: The Approximation of Functions. Vol. I: Linear Theory. Addison-Wesley, Reading (1964)

    Google Scholar 

  91. Rizzardi, M.: A modification of Talbot’s method for the simultaneous approximation of several values of the inverse Laplace transform. ACM Trans. Math. Softw. 21(4), 347–371 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  92. Schmelzer, T., Trefethen, L.N.: Computing the gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45(2), 558–571 (2007) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  93. Schonfelder, J.L.: Chebyshev expansions for the error and related functions. Math. Comput. 32(144), 1232–1240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  94. Schulten, Z., Anderson, D.G.M., Gordon, R.G.: An algorithm for the evaluation of the complex Airy functions. J. Comput. Phys. 31(1), 60–75 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  95. Schulten, Z., Gordon, R.G., Anderson, D.G.M.: A numerical algorithm for the evaluation of Weber parabolic cylinder functions U(a, x), V(a, x), and W(a, ±x). J. Comput. Phys. 42(2), 213–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  96. Seaton, M.J.: Coulomb functions for attractive and repulsive potentials and for positive and negative energies. Comput. Phys. Commun. 146(2), 225–249 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. Seaton, M.J.: FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Commun. 146(2), 250–253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  98. Seaton, M.J.: NUMER, a code for Numerov integrations of Coulomb functions. Comput. Phys. Commun. 146(2), 254–260 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  99. Segura, J.: Reliable computation of the zeros of solutions of second order linear ODEs with a fourth order method. SIAM J. Numer. Anal. 48(2), 452–469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  100. Segura, J.: The zeros of special functions from a fixed point method. SIAM J. Numer. Anal. 40(1), 114–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  101. Segura, J., de Córdoba, P.F., Ratis, Yu.L.: A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Commun. 105(2–3), 263–272 (1997)

    Article  MATH  Google Scholar 

  102. Segura, J., Gil, A.: Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Commun. 115(1), 69–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  103. Segura, J., Temme, N.M.: Numerically satisfactory solutions of Kummer recurrence relations. Numer. Math. 111(1), 109–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  104. Shippony, Z., Read, W.G.: A correction to a highly accurate Voigt function algorithm. JQSRT 78(2), 255 (2003)

    Article  Google Scholar 

  105. Smith, D.M.: Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. ACM Trans. Math. Softw. 27(4), 377–387 (2001)

    Article  MATH  Google Scholar 

  106. Stieltjes, T.-J.: Recherches sur quelques séries semi-convergentes. Ann. Sci. École Norm. Sup. (3) 3, 201–258 (1886)

    MathSciNet  MATH  Google Scholar 

  107. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23(1), 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  108. Talman, J.D.: NumSBT: A subroutine for calculating spherical Bessel transforms numerically. Comput. Phys. Commun. 180(2), 332–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. Temme, N.M.: On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys. 19(3), 324–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  110. Temme, N.M.: An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives. J. Comput. Phys. 32, 270–279 (1979)

    Article  MATH  Google Scholar 

  111. Temme, N.M.: Special Functions. Wiley, New York (1996). An introduction to the classical functions of mathematical physics

    Book  MATH  Google Scholar 

  112. Temme, N.M.: Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15(2), 207–225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  113. Thompson, W.J.: An Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners, with Programs in Fortran 90 and Mathematica. Wiley, New York (1997)

    MATH  Google Scholar 

  114. Trefethen, L.N., Weideman, J.A.C., Schmelzer, T.: Talbot quadrature and rational approximations. Technical report, Oxford University Computing Laboratory Numerical Analysis Group (2005)

    Google Scholar 

  115. Van Deun, J., Cools, R.: Algorithm 858: Computing infinite range integrals of an arbitrary product of Bessel functions. ACM Trans. Math. Softw. 32(4), 580–596 (2006)

    Article  MATH  Google Scholar 

  116. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, vol. 10. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  117. Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Teaneck (1989). Translated from the Chinese by Guo and X.J. Xia

    Book  Google Scholar 

  118. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  119. Weideman, J.A.C.: Optimizing Talbot’s contours for the inversion of the Laplace transform. Technical Report NA 05/05, Oxford U. Computing Lab. (2005)

    Google Scholar 

  120. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  121. Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10(5,6), 189–371 (1989)

    Article  Google Scholar 

  122. Weniger, E.J.: On the summation of some divergent hypergeometric series and related perturbation expansions. J. Comput. Appl. Math. 32(1–2), 291–300 (1990). Extrapolation and rational approximation (Luminy, 1989)

    Article  MathSciNet  MATH  Google Scholar 

  123. Weniger, E.J., Čížek, J.: Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Commun. 59(3), 471–493 (1990)

    Article  MATH  Google Scholar 

  124. Weniger, E.J., Čížek, J., Vinette, F.: The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 34(2), 571–609 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  125. Weniger, E.J.: Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Comput. Phys. 10, 496–503 (1996)

    Article  Google Scholar 

  126. Wuytack, L.: Commented bibliography on techniques for computing Padé approximants. In: Padé approximation and its applications, Proc. Conf., Univ. Antwerp, Antwerp, 1979. Lecture Notes in Math., vol. 765, pp. 375–392. Springer, Berlin (1979)

    Chapter  Google Scholar 

  127. Wynn, P.: On a device for computing the e m (S n ) tranformation. Math. Tables Aids Comput. 10, 91–96 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  128. Wynn, P.: Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 8(3), 264–269 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  129. Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their helpful comments and Dr. Ernst Joachim Weniger for providing us with notes that we used for writing Sect. 4.7.2. We acknowledge financial support from Ministerio de Educación y Ciencia, project MTM2006–09050. NMT acknowledges financial support from Gobierno of Navarra, Res. 07/05/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gil, A., Segura, J., Temme, N.M. (2011). Basic Methods for Computing Special Functions. In: Simos, T. (eds) Recent Advances in Computational and Applied Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9981-5_4

Download citation

Publish with us

Policies and ethics