Skip to main content

The Minimal Cell and Life’s Origin: Role of Water and Aqueous Interfaces

  • Chapter
  • First Online:
  • 1070 Accesses

Abstract

The cell is rich with interfaces. But the role of these interfaces with water has received little attention among biologists, who generally consider water to be a mere background carrier of the more important molecules of life. Hydrophilic surfaces do impact water, and it has been recently shown that the impact is larger than anticipated. Surfaces order water to substantial distances. The ordered water excludes solutes and separates charge. These features not only contribute to the ­gel-like nature of the cell, but also lead to an inevitability that pre-cells will form out of simple environmental constituents. Hence, an experimentally based mechanism is advanced to explain both life’s origin its requirement for water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 3rd edn. Garland, NY

    Google Scholar 

  • Bernstein MP et al (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416(6879):401–403

    Article  CAS  PubMed  Google Scholar 

  • Berry H, Pelta J, Lairez D, Larreta-Garde V (2000) Gel-sol transition can describe the proteolysis of extracellular matrix gels. Biochim Biophys Acta 1524(2–3):110–117

    CAS  PubMed  Google Scholar 

  • Cameron I (1988) Ultrastructural observations on the transectioned end of frog skeletal muscles. Physiol Chem Phys Med NMR 20:221–225

    CAS  PubMed  Google Scholar 

  • Frey-Wyssling A (1953) Submicroscopic morphology of protoplasm. Elsevier, Amsterdam

    Google Scholar 

  • Casademont J, Carpenter S, Karpati G (1988) Vacuolation of muscle fibers near sarcolemmal breaks represents T tubule dilation secondary to enhanced sodium pump activity. J Neuropath Exp Neurol 47:618–628

    Article  CAS  PubMed  Google Scholar 

  • Chai B, Yoo H, Pollack GH (2009) Effect of radiant energy on near-surface water. J Phys Chem B 113:13953–13958

    Article  CAS  PubMed  Google Scholar 

  • Clarke MSF, Caldwell RW, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76:927–934

    CAS  PubMed  Google Scholar 

  • Collins EW Jr, Edwards C (1971) Role of Donnan equilibrium in the resting potentials in glycerol-extracted muscle. Am J Physiol 22(4):1130–1133

    Google Scholar 

  • Feynman R, Leighton R, Sands M (1963) The Feynman lecture on Physics. Addison-Wesley, Reading, MA

    Google Scholar 

  • Fox SW (1980) Metabolic microspheres: origins and evolution. Naturwissenschaften 67(8):378–383

    Article  CAS  PubMed  Google Scholar 

  • Fox SW (1986a) Molecular selection in a unified evolutionary sequence. Int J Quantum Chem Quantum Biol Symp 13:223–235

    CAS  PubMed  Google Scholar 

  • Fox SW (1986) Molecular selection and natural selection. Quart Rev Biol 61(3): 375–386. CR – Copyright © 1986. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Fox S (1991) Synthesis of life in the lab? Defining a protoliving system. Quart Rev Biol 66(2):181–185

    Article  CAS  PubMed  Google Scholar 

  • Fox SW, Harada K, Hare PE (1981) Amino acids from the moon: notes on meteorites. Subcell Biochem 8:357–373

    CAS  PubMed  Google Scholar 

  • Green K, Otori T (1970) Direct measurements of membrane unstirred layers. J Physiol 207(1):93–102

    CAS  PubMed  Google Scholar 

  • Hochachka PW (1999) The metabolic implications of intracellular circulation. Proc Natl Acad Sci U S A 96(22):12233–12239

    Article  CAS  PubMed  Google Scholar 

  • Horn RG, Israelachvili JN (1981) Direct measurement of astructural forces between two surfaces in a nonpolar liquid. J Chem Phys 75(3):1400–1411

    Article  CAS  Google Scholar 

  • Ise N, Okubo T (1980) “Ordered” distribution of electrically charged solutes in dilute solutions. Acc Chem Res 13:303

    Article  CAS  Google Scholar 

  • Ise N, Okubo T (1983) Ordered structure in diluted solutions of highly charged polymer latices as studied by microscopy. Chem Phys 78:536

    CAS  Google Scholar 

  • Ise N (2007) When, why and how does like-like-like? Jpn Acad Ser B(83)

    Google Scholar 

  • Israelachvili JN, McGuiggan PM (1988) Forces between surfaces in liquids. Science 241:795–800

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN, Wennerström H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Yoshida H, Ise N (1994) Void structure in colloidal dispersions. Science 263(5143):66–68

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WP (1994) Caulerpa. Sci Amer 100–105

    Google Scholar 

  • Janmey PA, Shah JV, Tang JX, Stossel TP (2001) Actin filament networks. Results Probl Cell Differ 32:181–199

    CAS  PubMed  Google Scholar 

  • Jarvis SP et al (2000) Local solvation shell measurement in water using a carbon nanotube probe. J Phys Chem B 104:6091–6097

    Article  CAS  Google Scholar 

  • Jones DS (1999) Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance. Int J Pharm 179(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzhev YA (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 60(4):804–811

    Article  CAS  PubMed  Google Scholar 

  • Klimov A, Pollack GH (2007) Visualization of charge-carrier propagation in water. Langmuir 23(23):11890–11895

    Article  CAS  PubMed  Google Scholar 

  • Krause TL, Fishman HM, Ballinger ML, Ballinger GD, Bittner GD (1984) Extent mechanism of sealing in transected giant axons of squid and earthworms. J Neurosci 14:6638–6651

    Google Scholar 

  • Ling GN (1965) The physical state of water in living cell and model systems. Ann NY Acad Sci 125:401

    Article  CAS  PubMed  Google Scholar 

  • Ling GN, Walton CL (1976) What retains water in living cells? Science 191:293–295

    Article  CAS  PubMed  Google Scholar 

  • Ling GN (1992) A revolution in the physiology of the living cell. Krieger, Malabar, Fl

    Google Scholar 

  • Maniotis A, Schliwa M (1991) Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67:495–504

    Article  CAS  PubMed  Google Scholar 

  • McNeil PL, Ito S (1990) Molecular traffic through plasma membrane disruptions of cells in vivo. J Cell Sci 67:495–504

    Google Scholar 

  • McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Bio 137(1):1–4

    Article  CAS  Google Scholar 

  • Nagornyak K, Yoo H, Pollack GH (2009) Mechanism of attraction between like-charged particles in aqueous solution. Soft Matter 5:3850–3857

    Article  CAS  Google Scholar 

  • Nakashima T, Fox SW (1980) Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid. J Mol Evol 15(2):161–168

    Article  PubMed  Google Scholar 

  • Ovchinnikova K, Pollack GH (2009) Can water store charge? Langmuir 25:542–547

    Article  CAS  PubMed  Google Scholar 

  • Pashley RM, Kitchener JA (1979) Surface forces in adsorbed multilayers of water on quartz. J Colloid Interface Sci 71:491–500

    Article  CAS  Google Scholar 

  • Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC (1994) Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 66(5):1522–1530

    Article  CAS  PubMed  Google Scholar 

  • Pollack GH (2001) Cells, gels and the engines of life: a new, unifying approach to cell function. Ebner and Sons, Seattle

    Google Scholar 

  • Pollack GH, Clegg J (2008) Unsuspected linkage between unstirred layers, exclusion zones and water. In: Pollack GH, Chin W-C (eds) Phase transitions in cell biology, p 183. Springer, New York

    Google Scholar 

  • Przybylski AT et al (1982) Membrane, action, and oscillatory potentials in simulated protocells. Naturwissenschaften 69(12):561–563

    Article  CAS  PubMed  Google Scholar 

  • Rand RP, Parsegian VA, Rau DC (2000) Intracellular osmotic action. Cell Mol Life Sci 57(7):1018–1032

    Article  CAS  PubMed  Google Scholar 

  • Schwister K, Deuticke B (1985) Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biophys Acta 816(2):332–348

    Article  CAS  Google Scholar 

  • Serpersu EH, Kinosita K Jr, Tsong TY (1985) Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta 812(3): 779–785

    Article  CAS  PubMed  Google Scholar 

  • Sogami I, Ise N (1984) On the electrostatic interaction in macroionic solutions. J Chem Phys 81:6320

    Article  Google Scholar 

  • Taylor SR, Shlevin HH, Lopez JR (1975) Calcium in excitation-contraction coupling of skeletal muscle. Biochem Soc Transact 7:759–764

    Google Scholar 

  • Wiggins PM (1990) Role of water in some biological processes. Microbiol Rev 54(4):432–449

    CAS  PubMed  Google Scholar 

  • Xie TD, Sun L, Tsong TY (1990) Studies of mechanisms of electric field-induced DNA transfection. Biophys J 58:13–19

    Article  CAS  PubMed  Google Scholar 

  • Yawo H, Kuno M (1985) Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. J Neurosci 5:1626–1632

    CAS  PubMed  Google Scholar 

  • Zhao Q et al (2008) Unexpected effect of light on colloidal crystal spacing. Langmuir 24(5):1750–1755

    Article  CAS  PubMed  Google Scholar 

  • Zheng JM, Chin W-C, Khijniak E, Khijniak E Jr, Pollack GH (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Coll Inter Sci 127(1):19–27

    Article  CAS  Google Scholar 

  • Zheng JM, Pollack GH (2003) Long-range forces extending from polymer-gel surfaces. Phys Rev E 68(3 Pt 1):031408

    Article  Google Scholar 

  • Zheng J, Pollack GH (2006) Solute exclusion and potential distribution near hydrophilic surfaces. In: Pollack GH, Cameron IL, Wheatley DN (eds) Water and the cell, pp 165–174. Springer, New York

    Google Scholar 

Download references

Acknowledgement

The consent of Ebner and Sons to reprint figures from Pollack (2001), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Pollack, G.H., Figueroa, X., Zhao, Q. (2011). The Minimal Cell and Life’s Origin: Role of Water and Aqueous Interfaces. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_7

Download citation

Publish with us

Policies and ethics