Skip to main content

Biochemical Reactions in the Crowded and Confined Physiological Environment: Physical Chemistry Meets Synthetic Biology

  • Chapter
  • First Online:
Book cover The Minimal Cell

Abstract

Proteins and nucleic acids constitute at least 20–30% of the total mass (and volume) of all living organisms without exception. Although local composition may vary widely with location within a given cell and between cells, it is evident that much of the chemistry of life – as opposed to laboratory biochemistry – takes place within media containing a substantial volume fraction of macromolecules. These media are termed “crowded” or “volume-occupied”, rather than “concentrated”, as no single macromolecular species need be concentrated. Moreover, many biological compartments do not consist of a continuous fluid phase, but rather a series of small interstitial elements of fluid, or “pores”, bounded by membranes or other relatively immobile structural elements such as cytoskeletal filaments. Such interstitial volume elements might be likened to the holes in a sponge, except that the characteristic sizes of the “holes” are of the order of tens of nanometers. The soluble macromolecules within these pores are termed “confined” to reflect the discontinuous nature of the fluid phase and the small dimensions of the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The apparent equilibrium constant, defined as a function of the concentrations of solute species, is distinguished from the thermodynamic equilibrium constant, which is defined as a function of the thermodynamic activities of solute species. The relations presented in this section describe the effect of background interactions upon the apparent equilibrium constant for the selected reaction

  2. 2.

    Free energy changes denoted by ΔF may refer to either Gibbs or Helmholtz free energies since the relationships described here hold equally in constant pressure and constant volume systems

  3. 3.

    Predicted effects of macromolecular confinement on association equilibria have not yet been tested

References

  • Arbuzova A, Murray D, McLaughlin S (1998) MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta 1376:369–379

    CAS  PubMed  Google Scholar 

  • Blanco R, Arai A, Grinberg N, Yarmush DM, Karger BL (1989) Role of association on protein adsorption isotherms. Beta-lactoglobulin A adsorbed on a weakly hydrophobic surface. J Chromatogr 482:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  CAS  PubMed  Google Scholar 

  • Bolis D, Politou AS, Kelly G, Pastore A, Temussi PA (2004) Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. J Mol Biol 336:203–212

    Article  CAS  PubMed  Google Scholar 

  • Bookchin RM, Balasz T, Wang Z, Josephs R, Lew VL (1999) Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. Effects of non-S hemoglobins and inhibitors. J Biol Chem 274:6689–6697

    Article  CAS  PubMed  Google Scholar 

  • Chatelier RC, Minton AP (1996) Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J 71:2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Cheung MS, Thirumalai D (2006) Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J Mol Biol 357:632643

    Article  Google Scholar 

  • Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 102:4753–4758

    Article  CAS  PubMed  Google Scholar 

  • Colclasure GC, Parker JC (1992) Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J Gen Physiol 100:1–10

    Article  CAS  PubMed  Google Scholar 

  • Cutsforth G, Whitaker R, Hermans J, Lentz B (1989) A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins. Biochemistry 28:7453–7461

    Article  CAS  PubMed  Google Scholar 

  • Darst SA, Ribi HO, Pierce DW, Kornberg RD (1988) Two-dimensional crystals of E. coli RNA polymerase holoenzyme on positively charged lipid layers. J Mol Biol 203:269–273

    Article  CAS  PubMed  Google Scholar 

  • del Alamo M, Rivas G, Mateu MG (2005) Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro. J Virol 79:14271–14281

    Article  PubMed  Google Scholar 

  • Drenckhahn D, Pollard TD (1986) Elongation of actin filaments is a diffusion limited reaction at the barbed end and is accelerated by inert macromolecules. J Biol Chem 261:12754–12758

    CAS  PubMed  Google Scholar 

  • Edwards RA, Huber RE (1992) Surface denaturation of proteins: the thermal inactivation of beta-galactosidase (Escherichia coli) on wall-liquid surfaces. Biochem Cell Biol 70:63–69

    Article  CAS  PubMed  Google Scholar 

  • Eggers D, Valentine J (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Berry RS (2003) Proteins with H-bond packing defects are highly interactive with lipid bilayers: implications for amyloidogenesis. Proc Natl Acad Sci USA 100:2391–2396

    Article  CAS  PubMed  Google Scholar 

  • Ferrone F (2004) Polymerization and sickle cell disease: a molecular view. Microcirculation 11:115–128

    CAS  PubMed  Google Scholar 

  • Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Article  CAS  PubMed  Google Scholar 

  • Ghaemmaghami S, Oas TG (2001) Quantitative protein stability measurement in vivo. Nat Struct Biol 8:879–882

    Article  CAS  PubMed  Google Scholar 

  • Giddings JC, Kucera E, Russell CP, Myers MN (1968) Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography. J Phys Chem 72:4397–4408

    Article  CAS  Google Scholar 

  • Goodsell DS (1993) The machinery of life. Springer, New York

    Google Scholar 

  • Hall D, Minton AP (2002) Effects of inert volume-excluding macromolecules on protein fiber formation I. Equilibrium models. Biophys Chem 98:93–104

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Minton AP (2004) Effects of inert volume-excluding macromolecules on protein fiber formation II. Kinetic models for nucleated fiber growth. Biophys Chem 107:299–316

    Article  CAS  PubMed  Google Scholar 

  • Hatters D, Minton AP, Howlett GJ (2002) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem 277:7824–7830

    Article  CAS  PubMed  Google Scholar 

  • Herzog W, Weber K (1978) Microtubule formation by pure brain tubulin in vitro. The influence of dextran and polyethylene glycol. Eur J Biochem 91:249–254

    Article  CAS  PubMed  Google Scholar 

  • Ignatova Z, Gierasch LM (2004) Monitoring protein stability and aggregation in vivo by real time fluorescent labeling. Proc Natl Acad Sci USA 101:523–528

    Article  CAS  PubMed  Google Scholar 

  • Jarvis TC, Ring DM, Daube SS, von Hippel PH (1990) “Macromolecular crowding”: thermodynamic consequences for protein-protein interactions within the T4 DNA replication complex. J Biol Chem 265:15160–15167

    CAS  PubMed  Google Scholar 

  • Klimov DK, Newfield D, Thirumalai D (2002) Simulations of beta-hairpin folding confined to spherical pores using distributed computing. Proc Natl Acad Sci USA 99:8019–8024

    Article  CAS  PubMed  Google Scholar 

  • Knull HR, Walsh JL (1992) Association of glycolytic enzymes with the cytoskeleton. Curr Top Cell Regul 33:15–30

    CAS  PubMed  Google Scholar 

  • Knull H, Minton AP (1996) Structure within eukaryotic cytoplasm and its relationship to glycolytic metabolism. Cell Biochem Funct 14:237–248

    Article  CAS  PubMed  Google Scholar 

  • Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989–9990

    Article  CAS  PubMed  Google Scholar 

  • Kozer N, Schreiber G (2004) Effect of crowding on protein-protein association rates: fundamental differences between low and high mass crowding agents. J Mol Biol 336:763–774

    Article  CAS  PubMed  Google Scholar 

  • Lakatos S, Minton AP (1991) Interactions between globular proteins and F-actin in isotonic saline solution. J Biol Chem 266:18707–18713

    CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Lebowitz JL, Helfand E, Praestgaard E (1965) Scaled particle theory of fluid mixtures. J Chem Phys 43:774–779

    Article  CAS  Google Scholar 

  • Lindner R, Ralston G (1995) Effects of dextran on the self-association of human spectrin. Biophys Chem 57:15–25

    Article  CAS  PubMed  Google Scholar 

  • Lindner RA, Ralston GB (1997) Macromolecular crowding: effects on actin polymerization. Biophys Chem 66:57–66

    Article  CAS  PubMed  Google Scholar 

  • Martin J (2002) Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding. Biochemistry 41:5050–5055

    Article  CAS  PubMed  Google Scholar 

  • May A, Huehns ER (1975) The concentration dependence of the oxygen affinity of haemoglobin. S Br J Haematol 30:317–335

    Article  CAS  Google Scholar 

  • McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J Mol Biol 355:893–897

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1976) Quantitative relations between oxygen saturation and aggregation of sickle-cell hemoglobin: analysis of oxygen binding data. In: Hercules JI, Cottam GL, Waterman MR, Schechter AN (eds) Proceedings of the symposium on molecular and cellular aspects of sickle cell disease, pp 257–273. U.S. Department of Health, Education and Welfare, Bethesda, MD

    Google Scholar 

  • Minton AP (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–2120

    Article  CAS  Google Scholar 

  • Minton AP (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55:119–140

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1989) Holobiochemistry: an integrated approach to the understanding of biochemical mechanism that emerges from the study of proteins and protein associations in volume-occupied solutions. In: Srere P, Jones ME, Mathews C (eds) Structural and Organizational Aspects of Metabolic Regulation. Alan R. Liss, New York, pp 291–306

    Google Scholar 

  • Minton AP (1992) Confinement as a determinant of macromolecular structure and reactivity. Biophys J 63:1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1995) Confinement as a determinant of macromolecular structure and reactivity. II. Effects of weakly attractive interactions between confined macrosolutes and confining structures. Biophys J 68:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1998) Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Meth Enzymol 295:127–149

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2000a) Effect of a concentrated “inert” macromolecular cosolute on the stability of a globular protein with respect to denaturation by heat and by chaotropes: a statistical-thermodynamic model. Biophys J 78:101–109

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2000b) Effects of excluded surface area and adsorbate clustering on surface adsorption isotherms I. Equilibrium models. Biophys Chem 86:239–247

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2001a) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2001b) Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins II. Kinetic models. Biophys J 80:1641–1648

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(14):2863–2869

    Article  CAS  PubMed  Google Scholar 

  • Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–4826

    Article  CAS  PubMed  Google Scholar 

  • Nichol L, Ogston A, Wills P (1981) Effect of inert polymers on protein self association. FEBS Lett 126:18–20

    Article  CAS  PubMed  Google Scholar 

  • Nygren H, Stenberg M (1990) Surface-induced aggregation of ferritin: kinetics of adsorption to a hydrophobic surface. Biophys Chem 38:67–75

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran S, Barber BJ, Babbit RA, Dutta S (1995) Age-related changes in albumin-excluded volume fraction. Microvasc Res 50:373–380

    Article  CAS  PubMed  Google Scholar 

  • Ramsden JJ, Bachmanova GI, Archakov AI (1994) Kinetic evidence for protein clustering at a surface. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 50:5072–5076

    CAS  PubMed  Google Scholar 

  • Rivas G, Fernandez JA, Minton AP (1999) Direct observation of the self association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry 38:9379–9388

    Article  CAS  PubMed  Google Scholar 

  • Rivas G, Fernandez JA, Minton AP (2001) Direct observation of the enhancement of non-cooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ. Proc Natl Acad Sci USA 98:3150–3155

    Article  CAS  PubMed  Google Scholar 

  • Rotter M, Aprelev A, Adachi K, Ferrone F (2005) Molecular crowding limits the role of fetal hemoglobin in therapy for sickle cell disease. J Mol Biol 347:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Sasahara K, McPhie P, Minton AP (2003) Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 326:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Shastry M, Eftink M (1996) Reversible thermal unfolding of ribonuclease T1 in reverse micelles. Biochemistry 35:4094–4101

    Article  CAS  PubMed  Google Scholar 

  • Shtilerman M, Ding PT, Lansbury PT (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 41:3855–3860

    Article  CAS  PubMed  Google Scholar 

  • Somero GN, Osmond CB, Bolis CL (1992) Water and life. Springer, Berlin

    Google Scholar 

  • Spencer D, Xu K, Logan T, Zhou H (2005) Effects of pH, salt, and macromolecular crowding on the stability of FK506-binding protein: an integrated experimental and theoretical study. J Mol Biol 351:219–232

    Article  CAS  PubMed  Google Scholar 

  • Steadman BL, Trautman PA, Lawson EQ, Raymond MJ, Mood DA, Thomson JA, Middaugh CR (1989) A differential scanning calorimetric study of the bovine lens crystallins. Biochemistry 28:9653–9658

    Article  CAS  PubMed  Google Scholar 

  • Tellam RL, Sculley MJ, Nichol LW, Wills PR (1983) Influence of polyethylene glycol 6000 on the properties of skeletal-muscle actin. Biochem J 213:651–659

    CAS  PubMed  Google Scholar 

  • Tokuriki N, Kinjo M, Negi S, Hoshino M, Goto Y, Urabe I, Yomo T (2004) Protein folding by the effects of macromolecular crowding. Protein Sci 13:125–133

    Article  CAS  PubMed  Google Scholar 

  • Uversky V, Cooper M, Bower K, Li J, Fink A (2002) Accelerated alpha synuclein fibrillation in crowded milieu. FEBS Lett 515:99–103

    Article  CAS  PubMed  Google Scholar 

  • van den Berg B, Ellis R, Dobson C (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  Google Scholar 

  • Wilf J, Gladner JA, Minton AP (1985) Acceleration of fibrin gel formation by unrelated proteins. Thromb Res 37:681–688

    Article  CAS  PubMed  Google Scholar 

  • Zhou HX (2004) Protein folding and binding in confined spaces and in crowded solutions. J Mol Recognit 17:368–375

    Article  CAS  PubMed  Google Scholar 

  • Zhou HX, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293

    Article  CAS  PubMed  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Annu. Rev. Biophys. 37:375–397

    Google Scholar 

  • Zimmerman SB, Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci USA 84:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research conducted in A.P.M.’s laboratory is supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. The author thanks Peter McPhie (NIH) for reviewing drafts of this Commentary.

Research in GR lab is funded by the Spanish Ministry of Science and Innovation (grant BIO2008-04478-C03-03), the Madrid Government (COMBACT_CM), and the EU (HEALTH-F3-2009-223431).

We are grateful to Company of Biologists Ltd., which allowed the reproduction of the full article (Minton 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen P. Minton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Minton, A.P., Rivas, G. (2011). Biochemical Reactions in the Crowded and Confined Physiological Environment: Physical Chemistry Meets Synthetic Biology. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_5

Download citation

Publish with us

Policies and ethics