Skip to main content

Effect of Cytoskeleton on the Mechanosensitivity of Genes in Osteoblasts

  • Chapter
  • First Online:
  • 954 Accesses

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 4))

Abstract

Mechanosensitivity is the ability of tissues and cells to detect and make response to mechanical stimuli. Osteoblast is a kind of important mechanosensitive cell in bone tissue, while cytoskeleton plays an important role in the mechanotransduction in osteoblasts. This article reviewed the roles of cytoskeleton on the mechanotransduction of genes in osteoblasts, summarized that cytoskeleton integrity is essential for the expression of bone formation–related genes in osteoblasts, and concluded that cytoskeleton reorganization inhibition can enhance the mechanosensitivity of some genes in osteoblasts. Further researches on the specific mechanisms of cytoskeleton will shed new light on the transmission mechanisms of mechanical stress in osteoblasts, and will lay the foundation for the further investigations on the biomechanical behaviors of bone cells and even bone tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1. Biochem Biophys Res Commun 305:677–683

    Article  CAS  PubMed  Google Scholar 

  • Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 34:671–677

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RS, Bumann A, Schaffer JL, Gerstenfeld LC. (2002) Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem 84:497–508

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  CAS  PubMed  Google Scholar 

  • Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan RL (2000) Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol 278:C989–C997

    CAS  PubMed  Google Scholar 

  • Chen R, Fu Q (advisor) (2008) Effects of cytoskeleton reorganization inhibition on the expression of c-fos in osteoblasts induced by fluid shear stress. Master’s Thesis, Sun Yat-Sen University, Guangzhou

    Google Scholar 

  • Chou YH, Helfand BT, Goldman RD (2001) New horizons in cytoskeletal dynamics: transport of intermediate filaments along microtubule tracks. Curr Opin Cell Biol 13:106–109

    Article  CAS  PubMed  Google Scholar 

  • Chow JW, Chambers TJ (1994) Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am J Physiol 267:E287–E292

    CAS  PubMed  Google Scholar 

  • Cowles EA, Brailey LL, Gronowicz GA (2000) Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J Biomed Mater Res 52:725–737

    Article  CAS  PubMed  Google Scholar 

  • Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Wu C, Shen Y, Zheng S, Chen R (2008) Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress. J Biomech 41:3225–3228

    Article  PubMed  Google Scholar 

  • Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K (2006) Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res 21:956–964

    Article  CAS  PubMed  Google Scholar 

  • Guzman C, Jeney S, Kreplak L, Kasas S, Kulik AJ, Aebi U, Forro L (2006) Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 360:623–630

    Article  CAS  PubMed  Google Scholar 

  • Higuchi C, Nakamura N, Yoshikawa H, Itoh K (2009) Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J Bone Miner Metab 27:158–167

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Ishijima M, Ezura Y, Tsuji K, Rittling SR, Kurosawa H, Denhardt DT, Emi M, Nifuji A, Noda M (2006) Osteopontin is associated with nuclear factor kappaB gene expression during tail-suspension-induced bone loss. Exp Cell Res 312:3075–3083

    Article  CAS  PubMed  Google Scholar 

  • Jaasma MJ, Jackson WM, Tang RY, Keaveny TM (2007) Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J Biomech 40(9):1938–1945

    Article  PubMed  Google Scholar 

  • Kapur S, Baylink DJ, Lau KH (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32:241–251

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Chen ST, Baylink DJ, Lau KH (2004) Extracellular signal-regulated kinase-1 and -2 are both essential for the shear stress-induced human osteoblast proliferation. Bone 35:525–534

    Article  CAS  PubMed  Google Scholar 

  • Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51

    Article  CAS  PubMed  Google Scholar 

  • Lammerding J, Kamm RD, Lee RT (2004). Mechanotransduction in cardiac myocytes. Ann NY Acad Sci 1015:53–70

    Article  PubMed  Google Scholar 

  • Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 84:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Yeh CR, Chang SF, Lee PL, Chien S, Cheng CK, Chiu JJ (2008) Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner Res 23:1140–1149

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen G, Zheng L, Luo S, Zhao Z (2007) Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem 304:45–52

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu T, Zheng Y, Zhao Z, Liu Y, Cheng H, Luo S, Chen Y (2006) Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 348:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • McMahon AP, Champion JE, McMahon JA, Sukhatme VP (1990) Developmental expression of the putative transcription factor Egr-1 suggests that Egr-1 and c-fos are coregulated in some tissues. Development 108:281–287

    CAS  PubMed  Google Scholar 

  • Moalli MR, Caldwell NJ, Patil PV, Goldstein SA (2000). An in vivo model for investigations of mechanical signal transduction in trabecular bone. J Bone Miner Res 15:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96

    Article  CAS  PubMed  Google Scholar 

  • Norrdin RW, Shih MS (1988) Systemic effects of prostaglandin E2 on vertebral trabecular remodeling in beagles used in a healing study. Calcif Tissue Int 42:363–368

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara A, Arakawa T, Kaneda T, Takuma T, Sato T, Kaneko H, Kumegawa M, Hakeda Y (2001) Fluid shear stress-induced cyclooxygenase-2 expression is mediated by C/EBP beta, cAMP-response element-binding protein, and AP-1 in osteoblastic MC3T3-E1 cells. J Biol Chem 276:7048–7054

    Article  CAS  PubMed  Google Scholar 

  • Ogata T (1997) Fluid flow induces enhancement of the Egr-1 mRNA level in osteoblast-like cells: involvement of tyrosine kinase and serum. J Cell Physiol 170:27–34

    Article  CAS  PubMed  Google Scholar 

  • Qian A, di S, Gao X, Zhang W, Tian Z, Li J, Hu L, Yang P, Yin D, Shang P (2009) cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim Biophys Sin (Shanghai) 41:561–577

    Article  CAS  Google Scholar 

  • Reich KM, McAllister TN, Gudi S, Frangos JA (1997) Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 138:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156:609–615

    Article  CAS  PubMed  Google Scholar 

  • Schriefer JL, Warden SJ, Saxon LK, Robling AG, Turner CH (2005) Cellular accommodation and the response of bone to mechanical loading. J Biomech 38:1838–1845

    Article  PubMed  Google Scholar 

  • Smalt R, Mitchell FT, Howard RL, Chambers TJ (1997) Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain. Adv Exp Med Biol 433:311–314

    CAS  PubMed  Google Scholar 

  • Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse SH, McNeil S (1999) Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB J 13 Suppl:S157–S166

    CAS  PubMed  Google Scholar 

  • Suponitzky I, Weinreb M (1998) Differential effects of systemic prostaglandin E2 on bone mass in rat long bones and calvariae. J Endocrinol 156:51–57

    Article  CAS  PubMed  Google Scholar 

  • Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193:287–292

    Article  CAS  PubMed  Google Scholar 

  • Toma CD, Ashkar S, Gray ML, Schaffer JL, Gerstenfeld LC (1997) Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res 12:1626–1636

    Article  CAS  PubMed  Google Scholar 

  • Turner CH (1999). Toward a mathematical description of bone biology: the principle of cellular accommodation. Calcif Tissue Int 65:466–471

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa S, Godwin SL, Peterson DR, Epstein MA, Raisz LG, Pilbeam CC (2002) Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res 17:266–274

    Article  CAS  PubMed  Google Scholar 

  • Wu CJ, Fu Q (advisor) (2009). Effect of cytoskeleton reorganization inhibition on the mechanosensitivity of COX-2 in osteoblasts induced by fluid shear stress. Master’s Thesis, Sun Yat-Sen University, Guangzhou

    Google Scholar 

  • Zayzafoon M, Fulzele K, McDonald JM (2005) Calmodulin and calmodulin-dependent kinase IIalpha regulate osteoblast differentiation by controlling c-fos expression. J Biol Chem 280:7049–7050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Projects of Guangdong Province (No. 2008B030301121 and 2009B050700027), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fu, Q., Zhang, Y., Xu, Y., Li, Y., Guo, L., Shao, M. (2010). Effect of Cytoskeleton on the Mechanosensitivity of Genes in Osteoblasts. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity and Mechanotransduction. Mechanosensitivity in Cells and Tissues, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9881-8_3

Download citation

Publish with us

Policies and ethics