Skip to main content

Interpretation of Core Field Models

  • Chapter
  • First Online:

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 5))

Abstract

In this chapter we review several recent research results on the observed geomagnetic secular variation and secular acceleration, the core flow models inferred from these observations, and their implications, in particular those of the torsional oscillations, on short period secular variation and on the dynamical properties inside the core. We also provide a comprehensive review on the recent development in geomagnetic data assimilation, and its applications to predict future secular variation. Most of the reviewed research results are either reported in IAGA General Assembly in Soporan in 2009, or in the period between this and the previous IAGA conference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amit H, Olson P (2004) Helical core flow from geomagnetic secular variation. Phys Earth Planet Inter 147:1–25

    Article  Google Scholar 

  • Amit H, Aubert J, Hulot H, Olson P (2008) A simple model for mantle-driven flow at the top of the Earth’s core. Earth Planet Space 60:845–854

    Google Scholar 

  • Aubert J, Amit H, Hulot H, Olson P (2009) Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454:758–761

    Article  Google Scholar 

  • Backus GE (1968) Kinematics of secular variation in a perfectly conducting core. Phil Trans R Soc Lond A263:239–266

    Article  Google Scholar 

  • Ballani L, Wardinski I, Stromeyer D, Greiner-Mai H (2005) Time structure of the 1991 magnetic jerk in the core-mantle boundary zone by inverting global magnetic data supported by satellite measurements. In: Earth Observation with CHAMP Results from three years in orbit. Springer, New York, NY

    Google Scholar 

  • Beggan CD, Whaler KA (2009) Forecasting change of the magnetic field using core surface flows and ensemble Kalman Filtering. Geophys Res Lett 36. doi:10.1029/2009GL0399

    Google Scholar 

  • Beggan CD, Whaler KA, Macmillan S (2009) Biased residuals of core flow models from satellite-derived `virtual observatories’. Geophys J Int 177:463–475

    Article  Google Scholar 

  • Bloxham J, Zatman S, Dumberry M (2002) The origin of geomagnetic jerks. Nature 420:65–68

    Article  Google Scholar 

  • Braginsky SI (1967) Magnetic waves in the Earth’s core. Geomag Aeron 7:851–859

    Google Scholar 

  • Braginsky SI (1976) Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomag Aeron 10:1–8

    Google Scholar 

  • Braginsky SI (1989) The Z model of the geodynamo with an inner core and the oscillations of the geomagnetic dipole. Geomag Aeron 29:98–103

    Google Scholar 

  • Braginsky SI and Roberts PH (1987) A model-Z geodynamo. Geophys Astrophys Fluid Dyn 38:327–349

    Article  Google Scholar 

  • Buffett BA and Seagle CT (2010) Stratification of the top of the core due to chemical interactions with the mantle. J Geophys Res 115. doi:10.1029/2009JB006751

    Google Scholar 

  • Buffett BA, Jackson A (2009) Inversion of torsional oscillations for the structure and dynamics of Earths core. Geophys J Int doi:10.11111/j.1365-246X.2009.04129.x

    Google Scholar 

  • Canet E, Fournier A, Jault D (2009) Forward amd adjoint quasi-geostrophic models of the geomagnetic secular variation. J Geophy Res 114. doi:10.1029/2008JB006189

    Google Scholar 

  • Courtillot V, Le Mouël JL (1984) Geomagnetic secular variation impulses. Nature 311:709–716

    Article  Google Scholar 

  • Davis RG and Whaler KA (1997) The 1969 geomagnetic impulse and spin-up of the Earth’s liquid core. Phys Earth Planet Inter 103:181–194

    Article  Google Scholar 

  • Dumberry M (2010) Gravity variations induced by core flows. Geophy J Int 180:635–650

    Article  Google Scholar 

  • Dumberry M and Bloxham J (2003) Torque balance, Taylors constraint and torsional oscillations in a numerical model of the geodynamo. Phys Earth Planet Inter 140:29–51

    Article  Google Scholar 

  • Dumberry M and Bloxham J (2004) Variations in the Earth’s gravity field caused by torsional oscillations in the core. Geophy J Int 159:417–434

    Article  Google Scholar 

  • Eymin C, Hulot G (2005) On core surface flows inferred from satellite magnetic data. Phys Earth Planet Inter 152:200–220

    Article  Google Scholar 

  • Fournier A, Eymin C, Alboussiere T (2007) A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system. Nonlinear Proces Geophys 14:163–180

    Article  Google Scholar 

  • Gillet N, Jault D, Canet E, Fournier A (2010) Fast torsional waves and strong magnetic field within the Earth’s core. Nature doi:10.1038/nature09010

    Google Scholar 

  • Gillet N, Lesur V, Olsen N (2010) Geomagnetic core field secular variation models. Space Sci Rev doi:10.1007/s11214-009-9586-6

    Google Scholar 

  • Glatzmaier GA, Roberts PH (1995) A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377:203–209

    Article  Google Scholar 

  • Gubbins D (1982) Finding core motions from magnetic observations. Phil Trans R Soc Lond A306:247–254

    Article  Google Scholar 

  • Holme R (2007) Large-scale flow in the core. In: Olson P (ed) Core dynamics, treatise on geophysics, vol 8. Elsevier, Amsterdam: 107–130

    Chapter  Google Scholar 

  • Holme R, Whaler KA (2001) Steady core flow in an azimuthally drifting frame. Geophys J Int 145:560–569

    Article  Google Scholar 

  • Holme R, Olsen N (2006) Core surface flow modeling from high-resolution secular variation. Geophys J Int 166:518–528

    Article  Google Scholar 

  • Hulot G, Eymin C, Langlais B, Mandea M, Olsen N (2002) Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416:620–623

    Article  Google Scholar 

  • Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Phys Earth Planet Int 103:293–311

    Article  Google Scholar 

  • Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A358:957–990

    Article  Google Scholar 

  • Jault D (2003) Electromagnetic and topographic coupling, and LOD variations. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, London, pp 56–76

    Google Scholar 

  • Jault D (2008) Axial invariance of rapidly varying diffusionless motions in the Earths core interior. Phys Earth Planet Int 166:67–76

    Google Scholar 

  • Jault D, Gire C and LeMouël JL (1988) Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333:353–356

    Article  Google Scholar 

  • Jiang W, Kuang W (2008) An MPI-based MoSST core dynamics model. Phy Earth Planet Inter 170:46–51

    Article  Google Scholar 

  • Jiang W, Kuang W, Chao BF, Cox C (2007) Understanding time-variable gravity due to core dynamical processes with numerical geodynamo model. In: Dynamic planet 2005. IAG Proc 130:473–479

    Google Scholar 

  • Kageyama A, Sato T (1997) Generation mechanism of a dipole field by a magnetohydrodynamical dynamo. Phys Rev E 55:4617–4626

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modelingm, data assimilation and predictability. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Korte M, Constable CG (2005) The geomagnetic dipole moment over the last 7000 years—new results from a global model. Earth Planet Sci Lett 236:348–358

    Article  Google Scholar 

  • Kuang W (1999) Force balances and convective state in the Earth’s core. Phys Earth Planet Inter 116:65–79

    Article  Google Scholar 

  • Kuang W, Bloxham J (1997) An Earth like numerical dynamo model. Nature 389:371–374

    Article  Google Scholar 

  • Kuang W, Bloxham J (1999) Numerical modeling of magnetohydrodyanmic convection in a rapidly rotating spherical shell: weak and strong field dynamo actions. J Comp Phys 153:51–81

    Article  Google Scholar 

  • Kuang W, Chao BF (2003) Geodynamo modeling and core-mantle interaction. In: Dehandt V et al. (eds) The core-mantle boundary region. Geodyn Series 9 31:193–212

    Google Scholar 

  • Kuang W, Tangborn A, Jiang W, Liu D, Sun Z, Bloxham J, Wei Z (2008) MoSST_DAS: the first generation geomagnetic data assimilation framework. Commun Comput Phys 3:85–108

    Google Scholar 

  • Kuang W, Tangborn A, Wei Z, Sabaka T (2009) Constraining a numerical geodynamo model with 100 years of surface observations. Geophys J Int 179:1458–1468 doi:10.1111/ j.1365-246X.2009.04376.x

    Google Scholar 

  • Kuang W, Wei Z, Holme R, Tangborn A (2010) Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11, Earth Planets Space (2010)

    Google Scholar 

  • Langel RA, Estes RH (1982) A geomagnetic field spectrum. Geophys Res Lett 9:250–253

    Article  Google Scholar 

  • Langel RA, Kerridge DJ, Barraclough DR, Malin SRC (1986) Geomagnetic temporal change: 1903–1982, A spline representation. J Geomag Geoelectr 38:573–579

    Google Scholar 

  • Larmor J (1919) How could a rotating body such as the Sun become a magnet. Rep Br Assn Advan Sci 159–160

    Google Scholar 

  • Le Mouël JL (1984) Outer core geostrophic flow and secular variation of Earths magnetic field. Nature 311:734–735

    Article  Google Scholar 

  • Lesur V, Wardinski I, Rother M, Mandea M (2008) GRIMM: the GFZ reference internalmagnetic model based on vector satellite and observatory data. Geophys J Int 173:382–394

    Article  Google Scholar 

  • Lesur V, Wardinski I (2009) Comment on “Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field?” In: Stefan Maus, Luis Silva, Gauthier Hulot (eds). J Geophys Res 114 doi:10.1029/2008JB006188

    Google Scholar 

  • Liu D, Tangborn A, Kuang W (2007) Observing system simulation experiments in geomagnetic data assimilation. J Geophys Res 112. doi:10.1029/2006JB004691

    Google Scholar 

  • Mandea M, Olsen N (2006) A new approach to directly determine the secular variation from magnetic satellite observations. Geophys Res Lett doi:10.1029/2006GL026616

    Google Scholar 

  • Maus S, Rother M, Stolle C, Mai W, Choi S, Lühr H (2006) Third generation of the Potsdam magnetic model of the Earth. Geochem Geophy Geosys doi:10.1029/ 2006GC001269

    Google Scholar 

  • Maus S, Silva L, Hulot G (2008) Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field? J Geophy Res 113. doi:10.1029/2007JB005199

    Google Scholar 

  • Olsen N, Mandea M (2007) Investigation of a secular variation impulse using satellite data: the 2003 geomagnetic jerk. Earth Planet Sci Lett 255:94–105

    Article  Google Scholar 

  • Olsen N, Mandea M (2008) Rapidly changing flows in the Earth’s core. Nature Geosci 1:390–394

    Article  Google Scholar 

  • Olsen N, Lür H, Sabaka TJ, Mandea M, Rother M, Tøffner-Clausen L, Choi S (2006) CHAOS–a model of the Earth’s magnetic field derived from CHAMP, Ørsted and SAC-C magnetic satellite data. Geophys J Int 166:67–75

    Article  Google Scholar 

  • Olsen N, Mandea M, Sabaka TJ, Tøffner-Clausen L (2009) CHAOS-2: a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int. 179:1477–1487 doi:10.1111/j.1365-246X.2009.04386.x

    Google Scholar 

  • Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571

    Article  Google Scholar 

  • Pais MA, Oliveria O, Nogueira F (2004) Nonuniqueness of inverted coremantle boundary flows and deviations from tangential geostrophy. J Geophys Res. doi:10.1029/2004JB003012

    Google Scholar 

  • Pinheiro K, Jackson A (2008) Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays? Geophys J Int 173:781–792

    Article  Google Scholar 

  • Roberts PH and Scott S (1965) On analysis of the secular variation, 1: a hydromagnetic constraint: theory. J Geomagnetic Geoelectric 17:137–151

    Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547

    Article  Google Scholar 

  • Sun Z, Tangborn A, Kuang, W (2007) Data assimilation in a sparsely observed one-dimensional modeled MHD system. Nonlin Process Geophys 14:181–192

    Article  Google Scholar 

  • Taylor JB (1963) The magnetohydrodynamics of a rotating uid and the Earth’s dynamo problem. Proc R Soc Lond A274:274–283

    Google Scholar 

  • Wardinski I, Holme R, Asari S, Mandea M (2008) The 2003 geomagnetic jerk and its relation to the core surface flows. Earth Planet Sci Lett 267:468–481

    Article  Google Scholar 

  • Wicht J, Christensen UR (2010) Torsional oscillations in dynamo simulations. Geophy J Int 181:1367–1380

    Google Scholar 

  • Zatman SA, Bloxham J (1997) Torsional oscillations and the magnetic field within the Earth’s core. Nature 388:760–763

    Article  Google Scholar 

Download references

Acknowledgements

We thank Terence Sabaka, Nils Olsen and Mioara Mandea for their help on this manuscript. This work is supported by the NSF Collaborative Mathematical Geophysics (CMG) program under the grant EAR-0327875, by the NSF Collaborative Research CSEDI under the grant EAR-0757880, and by the NASA Earths Surface and Interior Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kuang, W., Tangborn, A. (2011). Interpretation of Core Field Models. In: Mandea, M., Korte, M. (eds) Geomagnetic Observations and Models. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9858-0_12

Download citation

Publish with us

Policies and ethics