Skip to main content

Detection of Bacterial and Phytoplasmal Pathogens in the Environment

  • Chapter
  • First Online:
  • 1497 Accesses

Abstract

Plant pathogenic bacteria, except a few, can exist outside plant hosts for short or long periods in soil, water or air and infect the healthy susceptible plants, when they are available. Various methods of detection of bacterial pathogens in the environmental samples have been followed. Biological methods depending on their ability to develop in cell-free media and pathogenicity are the basic and essential methods, although they may be time-consuming and labor intensive. Immunological assays and nucleic acid-based techniques provide more sensitive and specific detection and quantification of pathogen population in the environment especially in the soil samples. These methods are useful in establishing the identity of bacterial pathogens conclusively, when many other saprophytic bacteria are present. Diagnostic methods are very useful in assessing the host range of bacterial pathogens and this information will be required for epidemiological studies.

Phytoplasmas, the cell wall-less bacteria-like organisms require living cells for their existence. They can infect other plant species and natural insect vectors. Both may be able to serve as sources of infection of the primary crop hosts. Various diagnostic techniques especially nucleic acid-based procedures have been applied for the detection, quantification and differentiation as well as for the classification of phytoplasmas in the plant hosts and also in the vector insects. Concerted attempts of researchers have recently succeeded in culturing one of the phytoplasmas in cell-free media, opening up the possibility of rapid advancement in understanding the biology of these pathogens and consequent development of effective management methods for the phytoplasmal diseases.

Bacterial plant pathogens can exist, outside plant hosts, in the soil, water and air. On the other hand, phytoplasmal pathogens are obligate pathogens and hence, they are incapable of existing outside the host. Both bacterial and phytoplasmal pathogens exhibit biological relationships with various insect species that carry them even to long distances breaking the geographical barriers and making the efforts of various countries to contain the spread of these pathogens ineffective. However, consistent attempts have been made to detect these pathogens in different habitats to develop suitable disease management systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Álvarez B, López MM, Biosca EG (2007) Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Appl Environ Microbiol 73: 7210–7217.

    Article  PubMed  Google Scholar 

  • Arocha Y, Almeida R, Jones P (2008) Using ribosomal probe for the detection of the phytoplasma associated with bunchy top symptom of papaya (BTS) in plant and insect hosts. Rev Prot Veg 23: 16–20.

    Google Scholar 

  • Babaie G, Khatabi B, Bayat H, Rastgou M, Hosseini A, SalekDeh GH (2007) Detection and characterization of phytoplasmas infecting ornamental and weed plants in Iran. J Phytopathol 155: 368–372.

    Article  Google Scholar 

  • Berg M, Melcher U, Fleltcher J (2001) Characterization of Sprioplasma citri adhesion related protein SARP1 which contains a domain of novel family designated sarpin. Gene 275: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Bock CH, Parker PE, Gottwald TR (2005) Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Dis 89: 71–80.

    Article  Google Scholar 

  • Boudon-Padieu E, Larrue J, Clair D, Hourdel J, Jeanneau A, Sforza R, Collin E (2004) Detection and prophylaxis of elm yellows phytoplasmas in France. Invest Agrar Sist Recur For 13: 71–80.

    Google Scholar 

  • Buzombo P, Jaimes J, Lam V, Cantrell K, Harkness M, McCullough D, Morano L (2006) An American hybrid vineyard in the Texas Gulf Coast: Analysis within a Pierce’s disease of hot zone. Am J Enol Vitic 57: 347–355.

    Google Scholar 

  • Caruso P, Palomo JL, Bertolini E, Alvarez B, López MM, Biosca EG (2005) Seasonal variation of Ralstonia solanacearum biovar 2 populations in a Spanish river: Recovery of stressed cells at low temperatures. Appl Environ Microbiol 71: 140–148.

    Article  PubMed  CAS  Google Scholar 

  • Crockett AO, Wittwer CR (2001) Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides. Anal Biochem 290: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Crosslin JM, Vandemark GJ, Munyaneza JE (2006) Development of a real-time, quantitative PCR for detection of the Columbia Basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Dis 90: 663–667.

    Article  CAS  Google Scholar 

  • Damsteegt VD, Brlansky RH, Phillips PA, Roy A (2006) Transmission of Xylella fastidiosa causal agent of citrus variegated chlorosis by the glassy-winged sharpshooter, Homalodisca coagulata. Plant Dis 90: 567–570.

    Article  Google Scholar 

  • Davis RE, Dally EL, Jomantiene R, Zhao Y, Roe B, Lin SP, Shao J (2005) Cryptic plasmid pSKU146 from wall-less plant pathogen Spiroplasma kunkelii encodes an adhesion and components of a type IV translocation-related conjugation system. Plasmid 53: 179–190.

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Sinclair WA, Lee I-M, Dally E (1992) Cloned DNA probes specific for detection of a mycoplasma-like organisms (MLOs) associated with ash yellows. Mol Plant Microbe Interact 5: 163–169.

    Article  CAS  Google Scholar 

  • Dittapongpitch V, Surat S (2003) Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and polymerase chain reaction. J Phytopathol 151: 239–246.

    Article  CAS  Google Scholar 

  • Duduk B, Calarai A, Paltrinieri S, Duduk N, Bertaccini A (2008) Multigenic analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Ann Appl Biol doi:10.1111/j.1774-7348.2008.00285.x

    Google Scholar 

  • Elphinstone JG (1996) Survival and possibilities for extinction of Pseudomonas solanacearum (Smith) Smith in cool climates. Potato Res 39: 403–410.

    Article  Google Scholar 

  • Elphinstone JG, Stanford HM, Stead DE (1998) Survival and transmission of Ralstonia solanacearum in aquatic plants of Solanum dulcamara and associated with surface water in England. Bull OEPP 28: 93–94.

    Article  Google Scholar 

  • Fleischer SJ, de MacKiewicz D, Gildow FE, Lukezic FL (1999) Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera: Chrysomelidae). Environ Entomol 28: 470–476.

    Google Scholar 

  • Francis M, Lin H, Rosa JC, Doddapaneni H, Civerolo EL (2006) Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur J Plant Pathol 115: 203–213.

    Article  CAS  Google Scholar 

  • García-Salazar C, Gildow FE, Fleischer SJ, Cox-Foster D, Lukezic FL (2000) ELISA versus immunolocalization to determine the association of Erwinia tracheiphila in Acalyamma vittata (Coleoptera: Chrysomelidae). Environ Entomol 29: 542–550.

    Article  Google Scholar 

  • Gottwald TR, Irey M (2007) Post-hurricane analysis of citrus canker II: Predictive model estimation of disease spread and area potentially impacted by various eradication protocols following catastrophic weather events. Plant Mgt Network: doi: 10.1094/PHP-2007-0405-01-RS.

    Google Scholar 

  • Graham J, Lloyd AB (1978) An improved indicator plant method for the detection of Pseudomonas solanacearum race 3 in soil. Plant Dis Rep 62: 35–37.

    Google Scholar 

  • Graham J, Lloyd AB (1979) Survival of potato (strain race 3) of Pseudomonas solanacerarum in deeper soil layers. Aust J Agric Res 30: 489–496.

    Article  Google Scholar 

  • Griep RA, van Twisk C, van Beckhoven JRCM, van der Wolf JM, Schots A (1998) Development of specific recombinant monoclonal antibodies against lipopolysaccharide of Ralstonia solanacearum race 3. Phytopathology 88: 795–803.

    Google Scholar 

  • Holmes A, Govan J, Goldstein R (1978) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health. Emerg Infect Dis 4: 221–227.

    Article  Google Scholar 

  • Horita M, Yano K, Tsuchiya K (2004) PCR-based specific detection of Ralstonia solanacearum race 4 strains. J Gen Plant Pathol 70: 278–283.

    Article  CAS  Google Scholar 

  • Huang Q, Bentz J, Sherald JL (2006) Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J Plant Pathol 88: 77–81.

    Article  CAS  Google Scholar 

  • Hyman LJ, Sullivan L, Toth IK, Perombelon MCM (2001) Modified crystal violet pectate medium (CVP) based on a new pectate source (Slendid) for the detection and isolation of soft rot erwinias. Potato Res 44: 265–270.

    Article  Google Scholar 

  • Janse JD, Schans J (1998) Experience with the diagnosis and epidemiology of bacterial brown rot (Ralstonia solanacearum) in the Netherlands. Bull OEPP 28: 65–67.

    Article  Google Scholar 

  • Khakvar R, Sijam K, Yun WM, Radu S, Lin TK (2008) Improving a PCR-based method for identification of Ralstonia solanacearum in natural sources of West Malaysia. Am J Agric Biol Sci 3: 490–493.

    Article  Google Scholar 

  • Khan IA, Turpin FT, Lister RM, Scott DH, Whitford F (1997) Using enzyme-linked immunosorbent assay (ELISA) for the detection of Erwinia stewartii (Smith) Dye in corn plants and corn flea beetles (Chaetocnema pulicaria Melsheimer). Sarhad J Agric 13: 391–397.

    Google Scholar 

  • Krell RK, Boyd EA, Nay JE, Park Y-L, Perring TM (2007) Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am J Enol Vitic 58: 211–216.

    CAS  Google Scholar 

  • Kuo TT, Huang TC, Wu RY, Yang CM (1967) Characterization of three bacteriophages of Xanthomonas oryzae (Uyeda et Ishiyam) Dowson. Bot Bull Acad Sinica 8: 246–254.

    Google Scholar 

  • Kuske CR, Banton KI, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Mircrobiol 64: 2463–2472.

    CAS  Google Scholar 

  • Lherminier J, Terwisscha van ST, Boudon-Padieu E, Caudwell A (1989) Rapid immunofluorescence detection of the grapevine Flavescence dorée mycoplasma-like organism in the salivary glands of the leafhopper Euscelidius variegatus Kbm. J Phytopathol 125: 353–360.

    Article  Google Scholar 

  • Lin C-H, Hsu S-T, Tzeng K-C, Wang J-F (2009) Detection of race 1 strains of Ralstonia solanacearum in field samples in Taiwan using BIO-PCR method. Eur J Plant Pathol 124: 75–85.

    Article  CAS  Google Scholar 

  • Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF (2008) Detection of ‘Candiatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98: 389–396.

    Article  Google Scholar 

  • Manome A, Kageyama A, Kurata S, Yokomaku T, Koyama O, Kanagawa T, Tamaki H, Tagawa M, Kamagata Y ( 2008) Quantification of potato common scab pathogens in soil by quantitative competitive PCR with fluorescent quenching-based probes. Plant Pathol 57: 887–896.

    Article  CAS  Google Scholar 

  • Marazachi C, Veratti F, Bosco D (1998) Direct PCR detection of phytoplasmas in experimentally infected insects. Ann Appl Biol 133: 45–54.

    Article  Google Scholar 

  • McGaha LA, Jackson B, Bextine B, McCullough D, Morana L (2007) Potential plant reservoirs for Xylella fastidiosa in south Texas. Am J Enol Vitic 58: 398–401.

    Google Scholar 

  • Melamed S, Tanne E, Ben-Haim R, Edelbaum O, Yogev D, Sela I (2003) Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA. J Bacteriol 185: 6513–6521.

    Article  PubMed  CAS  Google Scholar 

  • Miller DN (2001) Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Meth 44: 49–58.

    Article  CAS  Google Scholar 

  • Olivier C, Lowery DT, Vincent C, Stobbs LM, Saguez J, Galka B, Bittner L (2008) Phytopalsma diseases in Canadian vineyards. Endure International Conference La Grand-Motte, France, 2008, pp. Q.46, 1–3.

    Google Scholar 

  • Pirone L, Chiarini L, Dalmastri C, Bevivino A, Tabacchioni S (2005) Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environ Microbiol 7: 1734–1742.

    Article  PubMed  CAS  Google Scholar 

  • Pooler MR, Myung IS, Bentz J, Sherald J, Hartung JS (1997) Detection of Xylella fastidiosa in potential insect vectors by immune magnetic separation and nested polymerase chain reaction. Lett Appl Microbiol 25: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Pradhanang PM, Elphinstone JG, Fox RTV (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49: 414–422.

    Article  Google Scholar 

  • Priou S, Aley P, Fernandez H, Gutarra L (1999) Sensitive detection of Ralstonia solanacearum (race 3) in soil by post-enrichment DAS-ELISA. Bacterial Wilt Newsletter No. 16, 10–13.

    Google Scholar 

  • Priou S, Grutarra L, Aley P (2006) An imporoved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS-ELISA. Plant Pathol 55: 36–45.

    Google Scholar 

  • Qu X, Wanner LA, Christ BJ (2008) Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. Phytopathology 98: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF, Andersen PC (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49: 243–270.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues JLM, Silva-Stenico ME, de Souza AN, Lopes JRS, Tsai SM (2006) In situ probing of Xylella fastidiosa in honey dew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides. Environ Microbiol 8: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Rodrgues JLM, Silva-Stenico ME, Gomes JE, Lopes JRS, Tsai SM (2003) Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Appl Environ Microbiol 69: 4249–4255.

    Article  Google Scholar 

  • Romeiro RS, Silva HAS, Beriam LOS, Rodrigues Neto J, Carvalho MG de (1999) A bioassay for detection of Agrobacterium tumefaciens in soil and plant material. Summa Phytopathol 25: 359–362.

    Google Scholar 

  • Salles JF, de Souza FA, van Elsas JD (2002) Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl Environ Microbiol 68: 1595–1603.

    Article  PubMed  CAS  Google Scholar 

  • Singh V, Baitha A, Sinha OK (2002) Transmission of grassy shoot disease of sugarcane by a leafhopper (Deltocephalus vulgaris Dash & Viraktamath). Ind J Sugar Technol 17: 60–63.

    Google Scholar 

  • Srivastava S, Singh V, Gupta PS, Sinha OK, Baitha A (2006) Nested PCR assay for detection of sugarcane grassy shoot phytoplasma in the leafhopper vector Deltocephalus vulgaris: a first report. Plant Pathol 55: 25–28.

    Article  CAS  Google Scholar 

  • Tanne E, Boudon-Padieu E, Clair D, Davidovich M, Melamed S, Klein M (2001) Detection of phytoplasma by polymerase chain reaction of insect feeding medium and its use in determining vectoring ability. Phytopathology 91: 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Tolu G, Botti S, Garau R, Prota VA, Sechi A, Prota U, Bertaccini A (2006) Identification of a 16SrII-E phytoplasma in Calendula arvensis, Solanum nigrum and Chenopodium spp. Plant Dis 90: 325–330.

    Article  CAS  Google Scholar 

  • Tomlinson DL, Elphinstone JG, Hanafy MS, Shoala TM, El-Fatah HA, Agag SH, Kamal M, El-Aliem MMA, Fawzi FG, Stead DE, Janse JD (2009) Recovery of Ralstonia solanacearum from canal water in traditional potato-growing areas of Egypt but not from designated pest-free areas. Eur J Plant Pathol 125: 589–601.

    Article  Google Scholar 

  • Van der Wolf JM, Van Beckhoven JRCM, De Haan EG, Van den Bovenkamp GW, Leone GOM (2004) Specific detection of Ralstonia solanacearum 16S rRNA sequences by AmpliDet RNA. Eur J Plant Pathol 110: 25–33.

    Article  Google Scholar 

  • Van der Wolf JM, Vriend SGC, Kastelein P, Nijhuis EH, van Bekkum PJ, van Vuurde JWL (2000) Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur J Plant Pathol 106: 123–133.

    Article  Google Scholar 

  • Wakkimoto S (1957) A simple method for comparison of bacterial populations in a large number of samples by phage technique. Ann Phytopathol Soc Jpn 22: 159–163.

    Article  Google Scholar 

  • Webb DR, Bonfiglioli RG, Carraro L, Osler R, Symons RH (1999) Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89: 894–901.

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Opgenorth DC, Davis RE, Chang CJ, Summers CG, Zhao Y (2006) Characterization of a novel adhesion-like gene and design of a real-time PCR for rapid, sensitive and specific detection of Spiroplasma kunkelii. Plant Dis 90: 1233–1238.

    Article  CAS  Google Scholar 

  • Wen A, Mallik I, Alavarado VY, Pasche JS, Wang X, Li W, Levy L, Scholthof HB, Rush CM, Gudmestad NC (2009) Detection, distribution and genetic variability of ‘Candidatus Liberibacter’ species associated with Zebra complex disease of potato in North America. Plant Dis 93: 1102–1115.

    Article  CAS  Google Scholar 

  • Wenneker M, Verdel MSW, Groeneveld RMW, Kempennar C, van Beuningen AR, Janse JD (1999) Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts: First report on stinging nettle (Urtica dioca). Eur J Plant Pathol 105: 307–315.

    Google Scholar 

  • Wicks TJ, Hall BH, Morgan BA (2007) Tuber soft rot and concentrations of Erwinia spp. in potato washing plants in South Australia. Aust Plant Pathol 36: 309–312.

    Article  Google Scholar 

  • Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M (2007) New bateriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153: 2630–2639.

    Article  PubMed  CAS  Google Scholar 

  • Yung ANL, ChiChung W (2000) The design of specific primers for the detection of Ralstonia solanacearum in soil samples by polymerase chain reaction. Bot Bull Acad Sinica 41: 121–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 1: Detection of Ralstonia solanacearum Race 1 Strains in Soils by BIO-PCR Assay (Lin et al. 2009)

3.1.1 Bacterial Enrichment Using MSM-1 Broth

  1. 1.

    Prepare the MSM-1 medium without agar consisting of 10 g peptone, 5 g glucose, 1 g casein hydrolysate, 50 mg 2,3,5-triphenyl tetrazolium chloride (TTC) in 1 l sterile distilled water (SDW) (deleting 15 g agar) with additional antimicrobial compound – 5 mg chloramphenicol, 5 mg crystal violet, 5 mg cycloheximide, 100 mg polymyxin B sulphate and 20 mg tyrothricin.

  2. 2.

    Transfer 10 g soil sample to 90 ml SDW; shake at 180 rpm at room temperature for 30 min; add 1 ml sample suspension to 9 ml MSM-1 broth and incubate at 30°C at 160 rpm for enrichment.

  3. 3.

    Transfer 5 μl enriched suspension to 200 μl PCR tube; cover with one drop of sterile mineral oil; boil for 5 min and keep the tube in ice.

  4. 4.

    Perform the PCR amplification using primer pair AU759f/AU760r with a 25-μl reaction mixture [consisting of 1 × PCR buffer containing 10 mM Tris-HCl, pH 9.0, 50 mM KCl and 0.1% TritonX-100)], 1.5 mM MgCl2, 0.005 mM each dNTP, 1 pmol of each primer, 2 U Taq DNA polymerase (Promega, USA) and 5 μl boiled bacterial suspension or enriched cultures.

  5. 5.

    Provide the following conditions using a thermal cycler: denaturing at 94°C for 3 min, annealing at 53°C for 1 min, extension at 72°C for 1.5 min followed by 30 cycles of 94°C for 18 s, 60°C for 18 s and 72°C for 5 min.

  6. 6.

    Resolve the PCR product of 282-bp on 1.5% agarose gel and staining in ethidium bromide solution (1 μg/ml) and visualize under UV light.

Appendix 2: Detection of Xylella fastidiosa (Xf) in Vector Insects by PCR Assay (Krell et al. 2007)

3.2.1 Extraction of DNA

  1. 1.

    Use DNeasy Tissue Kit (Qiagen, USA) to extract DNA separately from heads of Homalodisca liturata (Hl) and heads, thoraxes and abdomens of Diceroprocta apache (Da) and grind the individual insects in phosphate buffered saline (PBS) in sample extraction pouches (Agadia).

  2. 2.

    Use Ready-To-Go PCR beads (Amersham Biosciences, UK) with a grape-specific primer pair XF2542-L and XF2542-R for PCR amplifications; for each reaction provide one Ready-To-Go PCR bead, 0.25 μl of each primer, 10 μl extracted DNA and 14.5 μl sterile water.

  3. 3.

    Perform PCR amplification using a thermal cycler programmed for one cycle of 95°C for 5 min followed by 35 cycles of 94°C for 40 s, 55°C for 40 s, 72°C for 1 min and finally one cycle of 72°C for 5 min and held at 4°C.

  4. 4.

    Resolve the amplicons by electrophoresis on 1.5% agarose-tris-borate-EDTA gel and stained with ethidium bromide (0.5 μg/ml of gel) to visualize the separated bands.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Narayanasamy, P. (2011). Detection of Bacterial and Phytoplasmal Pathogens in the Environment. In: Microbial Plant Pathogens-Detection and Disease Diagnosis:. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9769-9_3

Download citation

Publish with us

Policies and ethics