Skip to main content

Tumor Stem Cells: Therapeutic Implications of a Paradigm Shift in Multiple Myeloma

  • Chapter
  • First Online:

Part of the book series: Cancer Growth and Progression ((CAGP,volume 13))

Abstract

A current paradigm shift in cancer research is the realization of extreme heterogeneity of tumor composition in terms of cellular proliferative potential. In the same way that the full hematopoietic system can be reconstituted by a very small number of hematopoietic stem cells administered to an irradiated host, a belief is being established in the field that within a tumor mass there resides a rare cell population with indefinite potential for self-renewal that maintains the tumor mass. The existence of such a population, termed by some as “tumor stem cells” has been postulated by radiobiologists for decades. Currently numerous phenotypic markers and functional properties have been ascribed to tumor stem cells. In multiple myeloma (MM), the question of tumor stem cells becomes even more fascinating since the originating cell is one of the few cells in the body capable of self renewal in non-malignant situations. In this chapter we provide an overview the concept of tumor stem cells, discuss the progress made in MM at understanding tumor stem cells, and propose possible approaches towards therapeutics based on targeting of tumor stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hai-Jiang W, Xin-Na D, Hui-Jun D (2008) Expansion of hematopoietic stem/progenitor cells. Am J Hematol 83:922–926

    Article  PubMed  Google Scholar 

  2. Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S et al (2008) Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 26:1315–1324

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi T, Iwai M, Ikeda T, Jin G, Deguchi K, Nagotani S, Zhang H, Sehara Y, Nagano I, Shoji M et al (2005) Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res 1038:41–49

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Theise N, Chua M, Reid LM (2008) The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 48:1598–1607

    Article  CAS  PubMed  Google Scholar 

  5. Young HE, Duplaa C, Romero-Ramos M, Chesselet MF, Vourc’h P, Yost MJ, Ericson K, Terracio L, Asahara T, Masuda H et al (2004) Adult reserve stem cells and their potential for tissue engineering. Cell Biochem Biophys 40:1–80

    Article  CAS  PubMed  Google Scholar 

  6. Ruiter DJ, Schlingemann RO, Westphal JR, Denijn M, Rietveld FJ, De Waal RM (1993) Angiogenesis in wound healing and tumor metastasis. Behring Inst Mitt 258–272

    Google Scholar 

  7. Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M (2005) Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 69:159–166

    Article  PubMed  Google Scholar 

  8. Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19–34

    Google Scholar 

  9. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  PubMed  Google Scholar 

  10. Raghunand N (2006) Tissue pH measurement by magnetic resonance spectroscopy and imaging. Methods Mol Med 124:347–364

    PubMed  Google Scholar 

  11. Gillies RJ, Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev 26:311–317

    Article  CAS  PubMed  Google Scholar 

  12. Meng X, Riordan NH (2006) Cancer is a functional repair tissue. Med Hypotheses 66:486–490

    Article  CAS  PubMed  Google Scholar 

  13. Sporn MB (1997) The war on cancer: a review. Ann N Y Acad Sci 833:137–146

    Article  CAS  PubMed  Google Scholar 

  14. Mendelsohn ML (1962) Chronic infusion of tritiated thymidine into mice with tumors. Science 135:213–215

    Article  CAS  PubMed  Google Scholar 

  15. Baserga R, Kisieleski WE (1962) Comparative study of the kinetics of cellular proliferation of normal and tumorous tissues with the use of tritiated thymidine. I. Dilution of the label and migration of labeled cells. J Natl Cancer Inst 28:331–339

    CAS  PubMed  Google Scholar 

  16. Steel GG, Lamerton LF (1966) The growth rate of human tumours. Br J Cancer 20:74–86

    CAS  PubMed  Google Scholar 

  17. Ichim CV, Wells RA (2006) First among equals: the cancer cell hierarchy. Leuk Lymphoma 47:2017–2027

    Article  CAS  PubMed  Google Scholar 

  18. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs P, Wood L (2005) Clonogenic growth patterns correlate with chemotherapy response in acute myeloid leukaemia. Hematology 10:321–326

    Article  CAS  PubMed  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  21. Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM (2007) A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells 25:2419–2429

    Article  CAS  PubMed  Google Scholar 

  22. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  CAS  PubMed  Google Scholar 

  23. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K et al (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114:182–195

    CAS  PubMed  Google Scholar 

  24. Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34:461–475

    Article  CAS  PubMed  Google Scholar 

  25. Katoh Y, Katoh M (2007) Comparative genomics on PROM1 gene encoding stem cell marker CD133. Int J Mol Med 19:967–970

    CAS  PubMed  Google Scholar 

  26. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  27. Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M (2007) Biological and Genetic Characteristics of Tumor-Initiating Cells in Colon Cancer. Ann Surg Oncol

    Google Scholar 

  28. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  CAS  PubMed  Google Scholar 

  29. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A et al (2007) Expression of CD133–1 and CD133–2 in ovarian cancer. Int J Gynecol Cancer 18:506–514

    Google Scholar 

  30. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D et al (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    Article  CAS  PubMed  Google Scholar 

  31. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  32. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  CAS  PubMed  Google Scholar 

  33. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  34. Wei C, Guomin W, Yujun L, Ruizhe Q (2007) Cancer Stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line? Cancer Biol Ther 6:763–768

    Article  CAS  PubMed  Google Scholar 

  35. Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC (2007) Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med 36:594–603

    Article  PubMed  Google Scholar 

  36. Sales KM, Winslet MC, Seifalian AM (2007) Stem cells and cancer: an overview. Stem Cell Rev 3:249–255

    Google Scholar 

  37. Lennartsson J, Ronnstrand L (2006) The stem cell factor receptor/c-Kit as a drug target in cancer. Curr Cancer Drug Targets 6:65–75

    Article  CAS  PubMed  Google Scholar 

  38. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  CAS  PubMed  Google Scholar 

  39. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860

    Article  PubMed  Google Scholar 

  40. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159

    Article  CAS  PubMed  Google Scholar 

  41. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877

    Article  CAS  PubMed  Google Scholar 

  42. Xu JX, Morii E, Liu Y, Nakamichi N, Ikeda J, Kimura H, Aozasa K (2007) High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: high expression of CD55 as a novel character for side-population. Exp Cell Res 313:1877–1885

    Article  CAS  PubMed  Google Scholar 

  43. Nishikawa SI, Osawa M (2006) Niche for normal and cancer stem cells. Ernst Schering Found Symp Proc 5:1–12

    Article  PubMed  Google Scholar 

  44. Guo W, Lasky JL 3rd, Wu H (2006) Cancer stem cells. Pediatr Res 59:59R–64R

    Article  PubMed  Google Scholar 

  45. Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK (2005) A distinct "side population" of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–205

    CAS  PubMed  Google Scholar 

  46. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  CAS  PubMed  Google Scholar 

  47. Cameron CM, Barrett JW, Liu L, Lucas AR, McFadden G (2005) Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol 79:6052–6067

    Article  CAS  PubMed  Google Scholar 

  48. Gorczynski RM, Lee L, Boudakov I (2005) Augmented induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation 79:488–491

    Article  CAS  PubMed  Google Scholar 

  49. Blade J, Rosinol L, Cibeira MT, de Larrea CF (2008) Pathogenesis and progression of monoclonal gammopathy of undetermined significance. Leukemia 22:1651–1657

    Article  CAS  PubMed  Google Scholar 

  50. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873

    Article  CAS  PubMed  Google Scholar 

  51. Orlowski RZ (2006) Initial therapy of multiple myeloma patients who are not candidates for stem cell transplantation. Hematology Am Soc Hematol Educ Program 338–347

    Google Scholar 

  52. Pant S, Copelan EA (2007) Hematopoietic stem cell transplantation in multiple myeloma. Biol Blood Marrow Transplant 13:877–885

    Article  PubMed  Google Scholar 

  53. Bergsagel DE, Valeriote FA (1968) Growth characteristics of a mouse plasma cell tumor. Cancer Res 28:2187–2196

    CAS  PubMed  Google Scholar 

  54. Hamburger A, Salmon SE (1977) Primary bioassay of human myeloma stem cells. J Clin Invest 60:846–854

    Article  CAS  PubMed  Google Scholar 

  55. Robillard N, Pellat-Deceunynck C, Bataille R (2005) Phenotypic characterization of the human myeloma cell growth fraction. Blood 105:4845–4848

    Article  CAS  PubMed  Google Scholar 

  56. Epstein J, Yaccoby S (2005) The SCID-hu myeloma model. Methods Mol Med 113:183–190

    PubMed  Google Scholar 

  57. Jensen GS, Mant MJ, Belch AJ, Berenson JR, Ruether BA, Pilarski LM (1991) Selective expression of CD45 isoforms defines CALLA+ monoclonal B-lineage cells in peripheral blood from myeloma patients as late stage B cells. Blood 78:711–719

    CAS  PubMed  Google Scholar 

  58. Jensen GS, Belch AR, Kherani F, Mant MJ, Ruether BA, Pilarski LM (1992) Restricted expression of immunoglobulin light chain mRNA and of the adhesion molecule CD11b on circulating monoclonal B lineage cells in peripheral blood of myeloma patients. Scand J Immunol 36:843–853

    Article  CAS  PubMed  Google Scholar 

  59. Bergsagel PL, Masellis Smith A, Belch AR, Pilarski LM (1995) The blood B-cells and bone marrow plasma cells in patients with multiple myeloma share identical IgH rearrangements. Curr Top Microbiol Immunol 194:17–24

    CAS  PubMed  Google Scholar 

  60. Szczepek AJ, Seeberger K, Wizniak J, Mant MJ, Belch AR, Pilarski LM (1998) A high frequency of circulating B cells share clonotypic Ig heavy-chain VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single-cell and in situ reverse transcriptase-polymerase chain reaction. Blood 92:2844–2855

    CAS  PubMed  Google Scholar 

  61. Berenson JR, Vescio RA, Hong CH, Cao J, Kim A, Lee CC, Schiller G, Berenson RJ, Lichtenstein AK (1995) Multiple myeloma clones are derived from a cell late in B lymphoid development. Curr Top Microbiol Immunol 194:25–33

    CAS  PubMed  Google Scholar 

  62. Billadeau D, Ahmann G, Greipp P, Van Ness B (1993) The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med 178:1023–1031

    Article  CAS  PubMed  Google Scholar 

  63. Bergui L, Schena M, Gaidano G, Riva M, Caligaris-Cappio F (1989) Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med 170:613–618

    Article  CAS  PubMed  Google Scholar 

  64. Caligaris-Cappio F, Bergui L, Tesio L, Pizzolo G, Malavasi F, Chilosi M, Campana D, van Camp B, Janossy G (1985) Identification of malignant plasma cell precursors in the bone marrow of multiple myeloma. J Clin Invest 76:1243–1251

    Article  CAS  PubMed  Google Scholar 

  65. Jensen GS, Mant MJ, Pilarski LM (1992) Sequential maturation stages of monoclonal B lineage cells from blood, spleen, lymph node, and bone marrow from a terminal myeloma patient. Am J Hematol 41:199–208

    Article  CAS  PubMed  Google Scholar 

  66. Bergsagel PL, Smith AM, Szczepek A, Mant MJ, Belch AR, Pilarski LM (1995) In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood 85:436–447

    CAS  PubMed  Google Scholar 

  67. Rasmussen T, Lodahl M, Hancke S, Johnsen HE (2004) In multiple myeloma clonotypic CD38–/CD19+/CD27+ memory B cells recirculate through bone marrow, peripheral blood and lymph nodes. Leuk Lymphoma 45:1413–1417

    Article  CAS  PubMed  Google Scholar 

  68. Masellis-Smith A, Belch AR, Mant MJ, Turley EA, Pilarski LM (1996) Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44. Blood 87:1891–1899

    CAS  PubMed  Google Scholar 

  69. Rasmussen T, Kastrup J, Knudsen LM, Johnsen HE (1999) High numbers of clonal CD19+ cells in the peripheral blood of a patient with multiple myeloma. Br J Haematol 105:265–267

    CAS  PubMed  Google Scholar 

  70. Szczepek AJ, Bergsagel PL, Axelsson L, Brown CB, Belch AR, Pilarski LM (1997) CD34+ cells in the blood of patients with multiple myeloma express CD19 and IgH mRNA and have patient-specific IgH VDJ gene rearrangements. Blood 89:1824–1833

    CAS  PubMed  Google Scholar 

  71. Pilarski LM, Belch AR (2002) Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors. Clin Cancer Res 8:3198–3204

    PubMed  Google Scholar 

  72. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ (2004) Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336

    Article  CAS  PubMed  Google Scholar 

  73. Pilarski LM, Jensen GS (1992) Monoclonal circulating B cells in multiple myeloma. A continuously differentiating, possibly invasive, population as defined by expression of CD45 isoforms and adhesion molecules. Hematol Oncol Clin North Am 6:297–322

    CAS  PubMed  Google Scholar 

  74. Hu BT, Lee SC, Marin E, Ryan DH, Insel RA (1997) Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J Immunol 159:1068–1071

    CAS  PubMed  Google Scholar 

  75. Sahota SS, Garand R, Mahroof R, Smith A, Juge-Morineau N, Stevenson FK, Bataille R (1999) V(H) gene analysis of IgM-secreting myeloma indicates an origin from a memory cell undergoing isotype switch events. Blood 94:1070–1076

    CAS  PubMed  Google Scholar 

  76. Corradini P, Boccadoro M, Voena C, Pileri A (1993) Evidence for a bone marrow B cell transcribing malignant plasma cell VDJ joined to C mu sequence in immunoglobulin (IgG)- and IgA-secreting multiple myelomas. J Exp Med 178:1091–1096

    Article  CAS  PubMed  Google Scholar 

  77. Bakkus MH, Van Riet I, Van Camp B, Thielemans K (1994) Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell. Br J Haematol 87:68–74

    Article  CAS  PubMed  Google Scholar 

  78. Reiman T, Seeberger K, Taylor BJ, Szczepek AJ, Hanson J, Mant MJ, Coupland RW, Belch AR, Pilarski LM (2001) Persistent preswitch clonotypic myeloma cells correlate with decreased survival: evidence for isotype switching within the myeloma clone. Blood 98:2791–2799

    Article  CAS  PubMed  Google Scholar 

  79. Vincent T, Mechti N (2005) Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Leuk Lymphoma 46:803–811

    Article  CAS  PubMed  Google Scholar 

  80. Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC (1992) Characterization of adhesion molecules on human myeloma cell lines. Blood 80:2306–2314

    CAS  PubMed  Google Scholar 

  81. Ridley RC, Xiao H, Hata H, Woodliff J, Epstein J, Sanderson RD (1993) Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 81:767–774

    CAS  PubMed  Google Scholar 

  82. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  CAS  PubMed  Google Scholar 

  83. Pilarski LM, Masellis-Smith A, Belch AR, Yang B, Savani RC, Turley EA (1994) RHAMM, a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes and malignant B cells: a mediator in B cell malignancy? Leuk Lymphoma 14:363–374

    Article  CAS  PubMed  Google Scholar 

  84. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    CAS  PubMed  Google Scholar 

  85. Turley EA, Belch AJ, Poppema S, Pilarski LM (1993) Expression and function of a receptor for hyaluronan-mediated motility on normal and malignant B lymphocytes. Blood 81:446–453

    CAS  PubMed  Google Scholar 

  86. Rodrigo Mora J, Von Andrian UH (2006) Specificity and plasticity of memory lymphocyte migration. Curr Top Microbiol Immunol 308:83–116

    Article  PubMed  Google Scholar 

  87. Pilarski LM, Masellis-Smith A, Szczepek A, Mant MJ, Belch AR (1996) Circulating clonotypic B cells in the biology of multiple myeloma: speculations on the origin of myeloma. Leuk Lymphoma 22:375–383

    Article  CAS  PubMed  Google Scholar 

  88. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104:607–618

    Article  CAS  PubMed  Google Scholar 

  89. Pilarski LM, Belch AR (1994) Circulating monoclonal B cells expressing P glycoprotein may be a reservoir of multidrug-resistant disease in multiple myeloma. Blood 83:724–736

    CAS  PubMed  Google Scholar 

  90. Williams RT, Sherr CJ (2008) The INK4-ARF (CDKN2A/B) Locus in Hematopoiesis and BCR-ABL-induced Leukemias. Cold Spring Harb Symp Quant Biol

    Google Scholar 

  91. Pilarski LM, Hipperson G, Seeberger K, Pruski E, Coupland RW, Belch AR (2000) Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood 95:1056–1065

    CAS  PubMed  Google Scholar 

  92. Pilarski LM, Seeberger K, Coupland RW, Eshpeter A, Keats JJ, Taylor BJ, Belch AR (2002) Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp Hematol 30:221–228

    Article  CAS  PubMed  Google Scholar 

  93. Pilarski LM, Szczepek AJ, Belch AR (1997) Deficient drug transporter function of bone marrow-localized and leukemic plasma cells in multiple myeloma. Blood 90:3751–3759

    CAS  PubMed  Google Scholar 

  94. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K (2008) Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol 45:633–639

    Google Scholar 

  95. Steiniger SC, Coppinger JA, Kruger JA, Yates J 3rd, Janda KD (2008) Quantitative mass spectrometry identifies drug targets in cancer stem cell containing side population. Stem Cells 26:3037–3046

    Google Scholar 

  96. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  CAS  PubMed  Google Scholar 

  97. Gazitt Y, Tian E, Barlogie B, Reading CL, Vesole DH, Jagannath S, Schnell J, Hoffman R, Tricot G (1996) Differential mobilization of myeloma cells and normal hematopoietic stem cells in multiple myeloma after treatment with cyclophosphamide and granulocyte-macrophage colony-stimulating factor. Blood 87:805–811

    CAS  PubMed  Google Scholar 

  98. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141

    Article  CAS  PubMed  Google Scholar 

  99. Boxall SA, Cook GP, Pearce D, Bonnet D, El-Sherbiny YM, Blundell MP, Howe SJ, Leek JP, Markham AF, de Wynter EA (2008) Haematopoietic repopulating activity in human cord blood CD133(+) quiescent cells. Bone Marrow Transplant

    Google Scholar 

  100. Quinones-Hinojosa A, Chaichana K (2007) The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 205:313–324

    Article  PubMed  Google Scholar 

  101. Kordes C, Sawitza I, Haussinger D (2008) Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem Biophys Res Commun 367:116–123

    Article  CAS  PubMed  Google Scholar 

  102. Ducos K, Panterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J (2000) p21(cip1) mRNA is controlled by endogenous transforming growth factor-beta1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 184:80–85

    Article  CAS  PubMed  Google Scholar 

  103. Deneme MA, Ok E, Akcan A, Akyildiz H, Soyuer I, Muhtaroglu S (2006) Single dose of anti-transforming growth factor-beta1 monoclonal antibody enhances liver regeneration after partial hepatectomy in biliary-obstructed rats. J Surg Res 136:280–287

    Article  CAS  PubMed  Google Scholar 

  104. Yong AS, Keyvanfar K, Hensel N, Eniafe R, Savani BN, Berg M, Lundqvist A, Adams S, Sloand EM, Goldman JM et al (2008) Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood 113:875–882

    Google Scholar 

  105. Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new target for therapy. J Clin Oncol 26:2862–2870

    Article  PubMed  Google Scholar 

  106. Li HZ, Yi TB, Wu ZY (2008) Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer 8:135

    Article  PubMed  CAS  Google Scholar 

  107. Sanchez-Garcia I, Vicente-Duenas C, Cobaleda C (2007) The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29:1269–1280

    Article  CAS  PubMed  Google Scholar 

  108. Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26:1357–1360

    Article  CAS  PubMed  Google Scholar 

  109. Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC et al (2006) Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107:2512–2520

    Article  CAS  PubMed  Google Scholar 

  110. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197

    Article  CAS  PubMed  Google Scholar 

  111. Kirshner J, Thulien KJ, Martin LD, Debes Marun C, Reiman T, Belch AR, Pilarski LM (2008) A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 112:2935–2945

    Article  CAS  PubMed  Google Scholar 

  112. Huls M, Russel FG, Masereeuw R (2009) The role of ABC transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther 328:3–9

    Google Scholar 

  113. Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341

    Article  CAS  PubMed  Google Scholar 

  114. Lin T, Islam O, Heese K (2006) ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 16:857–871

    Article  CAS  PubMed  Google Scholar 

  115. Nakauchi H (2004) Isolation and clonal characterization of hematopoietic and liver stem cells. Cornea 23:S2–7

    Article  PubMed  Google Scholar 

  116. Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF (2002) Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 293:670–674

    Article  CAS  PubMed  Google Scholar 

  117. Gordon MY, Levicar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, M’Hamdi H, Thalji T, Welsh JP, Marley SB et al (2006) Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24:1822–1830

    Article  PubMed  Google Scholar 

  118. Zabierowski SE, Herlyn M (2008) Melanoma stem cells: the dark seed of melanoma. J Clin Oncol 26:2890–2894

    Article  PubMed  Google Scholar 

  119. Huang P, Wang CY, Gou SM, Wu HS, Liu T, Xiong JX (2008) Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World J Gastroenterol 14:3903–3907

    Article  CAS  PubMed  Google Scholar 

  120. Kim YH, Ishii G, Goto K, Ota S, Kubota K, Murata Y, Mishima M, Saijo N, Nishiwaki Y, Ochiai A (2008) Expression of breast cancer resistance protein is associated with a poor clinical outcome in patients with small-cell lung cancer. Lung Cancer 65:105–115

    Google Scholar 

  121. Decleves X, Amiel A, Delattre JY, Scherrmann JM (2006) Role of ABC transporters in the chemoresistance of human gliomas. Curr Cancer Drug Targets 6:433–445

    Article  CAS  PubMed  Google Scholar 

  122. Kumar V, Varma N, Varma S, Vohra H, Malhotra P, Dutta U, Sharma SC (2004) Flow cytometric analysis of DNA indices, expression of p53 and multidrug resistance genes in multiple myeloma patients. Anal Quant Cytol Histol 26:271–277

    PubMed  Google Scholar 

  123. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M (2008) Adult stem cells and their trans-differentiation potential-perspectives and therapeutic applications. J Mol Med 86:1301–1314

    Article  PubMed  Google Scholar 

  124. Guan K, Hasenfuss G (2007) Do stem cells in the heart truly differentiate into cardiomyocytes? J Mol Cell Cardiol 43:377–387

    Article  CAS  PubMed  Google Scholar 

  125. Edling CE, Hallberg B (2007) c-Kit – a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 39:1995–1998

    Article  CAS  PubMed  Google Scholar 

  126. Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27:459–470

    Article  CAS  PubMed  Google Scholar 

  127. Ghosh N, Matsui W (2009) Cancer stem cells in multiple myeloma. Cancer Lett 277:1–7

    Google Scholar 

  128. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104:4048–4053

    Article  CAS  PubMed  Google Scholar 

  129. Huff CA, Matsui W, Smith BD, Jones RJ (2006) The paradox of response and survival in cancer therapeutics. Blood 107:431–434

    Article  CAS  PubMed  Google Scholar 

  130. Kapoor P, Greipp PT, Morice WG, Rajkumar SV, Witzig TE, Greipp PR (2008) Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol 141:135–148

    Article  CAS  PubMed  Google Scholar 

  131. Degos L (1991) Phenotypic reversion in acute promyelocytic leukemia. Nouv Rev Fr Hematol 33:511–515

    CAS  PubMed  Google Scholar 

  132. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96:3951–3956

    Article  CAS  PubMed  Google Scholar 

  133. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  CAS  PubMed  Google Scholar 

  134. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ (2006) Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res 66:7833–7836

    Article  CAS  PubMed  Google Scholar 

  135. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil H. Riordan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Riordan, N.H. et al. (2011). Tumor Stem Cells: Therapeutic Implications of a Paradigm Shift in Multiple Myeloma. In: Minev, B. (eds) Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Cancer Growth and Progression, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9704-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9704-0_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9703-3

  • Online ISBN: 978-90-481-9704-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics