Skip to main content

Computational Modeling of SCC Flow through Reinforced Sections

  • Conference paper
  • First Online:
Design, Production and Placement of Self-Consolidating Concrete

Part of the book series: RILEM Bookseries ((RILEM,volume 1))

  • 2402 Accesses

Abstract

Computational modeling of fresh SCC flow is a comprehensive and time consuming task. The computational time is additionally increased when simulating casting of reinforced sections, where each single reinforcement bar has to be modeled. In order to deal with this issue and to decrease the computational time, an innovative approach of treating a reinforcement network as a porous medium is applied. This contribution presents the model for concrete flow through reinforced sections, based on Computational Fluid Dynamics (CFD), coupling a single-phase flow model for SCC and a continuum macroscopic model for porous medium. In the last part of this paper, numerical simulations are compared with experimental results obtained on model fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roussel, N. (2007), Rheology of fresh concrete: From measurements to predictions of casting processes, RILEM Materials and Structures, vol. 40, n. 10, pp. 1001–1012.

    Article  Google Scholar 

  2. Roussel, N., Geiker, M.R., Dufour, F., Thrane, L.N. and Szabo, P. (2007), Computational modelling of concrete flow: General overview, Cement and Concrete Research, vol. 37, n. 9, p. 1298–1307.

    Article  Google Scholar 

  3. Nguyen, T.L.H. (2007), Modeling tools for casting concrete, PhD Thesis, Ecole Nationale des Ponts et Chaussées (in French).

    Google Scholar 

  4. Vasilic, K., Roussel, N., Meng, B. and Kühne, H.-C. (2009), Computational modelling of SCC flow: reinforcement network modelled as porous medium, In: Rheology of Cement Suspensions such as Fresh Concrete, Proceedings of the 3rd International RILEM Symposium, Rilem Publications S.A.R.L, Bagneux, France, pp. 148–154.

    Google Scholar 

  5. Ferraris, C., de Larrard, F. and Martys, N. (2001), Fresh concrete rheology: Recent developments, Materials Science of Concrete VI, pp. 215–241.

    Google Scholar 

  6. Sorbie, K.S., Clifford, P.J. and Jones, E.R.W. (1989), The rheology of pseudoplastic fluids in porous media using network modeling, J. Colloid Interface Sci., vol. 130, p. 508.

    Article  Google Scholar 

  7. Lopez, X., Valvatne, P.H. and Blunt, M. (2003), Predictive network modeling of single-phase non-Newtonian flow in porous media, J. Colloid Interface Sci., vol. 264 (1), pp. 256–265.

    Article  Google Scholar 

  8. Pearson, J.R.A. and Tardy, P.M.J. (2002), Models for flow of non-Newtonian and complex fluids through porous media, J. Non-Newtonian Fluid Mechanics, vol. 102, n. 2, pp. 447–473.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 RILEM

About this paper

Cite this paper

Vasilic, K., Roussel, N., Meng, B., Kühne, HC. (2010). Computational Modeling of SCC Flow through Reinforced Sections. In: Khayat, K., Feys, D. (eds) Design, Production and Placement of Self-Consolidating Concrete. RILEM Bookseries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9664-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9664-7_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9663-0

  • Online ISBN: 978-90-481-9664-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics