Skip to main content

Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds

  • Chapter
Eriophyoid Mites: Progress and Prognoses

Abstract

Eriophyoid mites, which are among the smallest plant feeders, are characterized by the intimate relationships they have with their hosts and the restricted range of plants upon which they can reproduce. The knowledge of their true host ranges and mechanisms causing host specificity is fundamental to understanding mite-host interactions, potential mite-host coevolution, and diversity of this group, as well as to apply effective control strategies or to use them as effective biological control agents. The aim of this paper is to review current knowledge on host specificity and specialization in eriophyoid mites, and to point out knowledge gaps and doubts. Using available data on described species and recorded hosts we showed that: (1) 80% of eriophyoids have been reported on only one host species, 95% on one host genus, and 99% on one host family; (2) Diptilomiopidae has the highest proportion of monophagous species and Phytoptidae has the fewest; (3) non-monophagous eriophyoids show the tendency to infest closely related hosts; 4) vagrant eriophyoids have a higher proportion of monophagous species than refuge-seeking and refuge-inducing species; (5) the proportions of monophagous species infesting annual and perennial hosts are similar; however, many species infesting annual hosts have wider host ranges than those infesting perennial hosts; (6) the proportions of species that are monophagous infesting evergreen and deciduous plants are similar; (7) non-monophagous eriophyoid species have wider geographic distribution than monophagous species. Field and laboratory host-specificity tests for several eriophyoid species and their importance for biological control of weeds are described. Testing the actual host range of a given eriophyoid species, searching for ecological data, genetic differentiation analysis, and recognizing factors and mechanisms that contribute to host specificity of eriophyoid mites are suggested as future directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson ML, Caira JN (1994) Evolutionary factors influencing the nature of parasite specificity. Parasitology 109:85–95

    Google Scholar 

  • Amrine JW Jr (2002) Multiflora rose. In: Van Driesche R, Lyon S, Blossey B, Hoddle M, Reardon R (eds) Biological control of invasive plants in the eastern United States, USDA forest service publication FHTET-2002-04, pp 265–292

    Google Scholar 

  • Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256

    Article  CAS  PubMed  Google Scholar 

  • Becerra JX, Venable DL (1999) Macroevolution of insect-plant associations: the relevance of host biogeography to host affiliation. PNAS 96:12626–12631

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA (1998) Evolution of feeding behaviour in insect herbivores. Bioscience 48:35–44

    Article  Google Scholar 

  • Bernays E, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman and Hall, 328 pp

    Google Scholar 

  • Blair CP, Abrahamson WG, Jackman TA, Tyrrell L (2005) Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution 59:304–316

    PubMed  Google Scholar 

  • Bolnick DI, SvanbĂ€ck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual speciation. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Bredow E, Pedrosa-Macedo JH, Medal JC, Cuda JP (2007) Open field host specificity tests in Brazil for risk assessment of Metriona elatior (Coleoptera: Chrysomelidae), a potential biological control agent of Solanum viarium (Solanaceae) in Florida. Flo Entomol 90:559–564

    Article  Google Scholar 

  • Briese DT (1999) Open field host-specificity tests: is ‘natural’ good enough for risk assessment? In: Withers TM, Barton L, Stanley J (eds) Host specificity testing in Australasia towards improved assays for biological control. CRC for Tropical Pest Management, Brisbane, pp 44–59

    Google Scholar 

  • Briese DT (2005) Translating host-specificity test results into the real world: the need to harmonise the yin and yang of current testing procedures. Biol Control 35:208–214

    Article  Google Scholar 

  • Carew M, Schiffer M, Umina P, Weeks A, Hoffmann A (2009) Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may be a species complex in Australia. Bull Entomol Res 99:479–486

    Google Scholar 

  • Carruthers RI, D’Antonio CM (2005) Science and decision making in biological control of weeds: benefits and risks of biological control. Biol Control 35:181–182

    Article  Google Scholar 

  • Clayton DH, Bush SE, Goates BM, Johnson KP (2003) Host defense reinforces host-parasite cospeciation. PNAS 100:15694–15699

    Article  CAS  PubMed  Google Scholar 

  • Clement SL, Cristofaro M (1995) Open-field tests in host- specificity determination of insects for biological control of weeds. Biocontrol Sci Technol 5:395–406

    Article  Google Scholar 

  • Cullen JM (1990) Current problems in host-specificity screening. In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of weeds, Rome, Italy, 1988, Istituto Sperimentale per la Patologia Vegetale, Rome, pp 27–36

    Google Scholar 

  • Cullen JM, Briese DT (2001) Host plant susceptibility to eriophyid mites used for weed biological control. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: Proceedings of the 10th international congress, CSIRO publishing, Melbourne, pp 342–348

    Google Scholar 

  • Cullen JM, Moore AD (1983) The influence of three populations of Aceria chondrillae on three forms of Chondrilla juncea. J Appl Ecol 20:235–243

    Article  Google Scholar 

  • de Lillo E, Sobhian R (1994) Taxonomy, distribution and host specificity of a gall-making mite Aceria tamaricis (Trotter) (Acari––Eriophyoidea) asociated with Tamarix gallica L. (Parietales: Tamaricaceae) in southern France. Entomologica (Bari) 28:5–16

    Google Scholar 

  • de Vienne DM, Giraud T, Shykoff JA (2007) When can host shifts produce congruent host and parasite phylogenies? A simulation approach. J Evol Biol 20:1428–1438

    Article  PubMed  Google Scholar 

  • Delfosse ES (2004) Introduction. In: Coombs EM, Clatk JK, Piper GL, Cofrancesco AF (eds) Biological control of invasive plants in the United States. Oregon State University Press, Corvallis, pp 1–11

    Google Scholar 

  • DrĂ©s M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B 357:471–492

    Article  Google Scholar 

  • Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Farrell BD (1998) ‘Inordinate fondness’ explained: why are there so many beetles? Science 281:555–559

    Article  CAS  PubMed  Google Scholar 

  • Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan RM (2000) Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Exp Appl Acarol 24:831–861

    Article  CAS  PubMed  Google Scholar 

  • Ferrari J, Goodfray HCJ, Faulconbridge AS, Prior K, Via S (2006) Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60:1574–1584

    PubMed  Google Scholar 

  • Fox LR, Morrow PA (1981) Specialization: species property or local phenomenon? Science 211:887–893

    Article  CAS  PubMed  Google Scholar 

  • Freeman TP, Goolsby JA, Ozman SK, Nelson DR (2005) An ultrastructural study of the relationship between the mite Floracarus perrepae Knihinicki & Boczek (Acariformes: Eriophyidae) and the fern Lygodium microphyllum (Lygodiaceae). Aust J Entomol 44:57–61

    Article  Google Scholar 

  • Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the comparative study of speciation ecology. Genetica 116:251–267

    Article  PubMed  Google Scholar 

  • Futuyma DJ (1983) Evolutionary interactions among herbivorous insects and plants. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer, Sunderland, pp 207–231

    Google Scholar 

  • Goolsby JA, Zonneveld R, Makinson JR, Pemberton RW (2005) Host-range and cold temperature tolerance of Floracarus perrepae Knihinicki & Boczek (Acari: Eriophyidae), a potential biological-control agent of Lygodium microphyllum (Pteridophyta: Lygodiaceae). Aust J Entomol 44:321–330

    Article  Google Scholar 

  • Goolsby JA, DeBarro PJ, Makinson JK, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic Press, London, p 278

    Google Scholar 

  • Hill RL (1999) Minimising uncertainty––in support of no-choice tests. In: Withers TM, Browne LB, Stanley J (eds) Host specificity testing in Australasia: towards improved assays for biological control. Scientific Publishing Indooroopilly, Queensland, pp 1–10

    Google Scholar 

  • Hrusa GF, Gaskin JF (2008) The Salsola tragus complex in California (Chenopodiaceae): characterization and status of Salsola australis and the autochthonous allopolyploid Salsola ryanii sp. nov. Madrono 55:113–131

    Article  Google Scholar 

  • Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239

    Article  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952

    Article  Google Scholar 

  • Johnson PA, Hoppensteadt FC, Smith JJ, Bush GL (1996) Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating. Evol Ecol 10:187–205

    Article  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Article  Google Scholar 

  • KozƂowski J, Boczek J (1987) Density and host plants of the apple rust mite, Aculus schlectendali (Nalepa) Acarina: Eriophyoidea). Prace Nauk IOR 29:39–50

    Google Scholar 

  • Lindquist EE (1996) External anatomy and notation of structures. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 1–30)

    Google Scholar 

  • Lindquist EE, Oldfield GN (1996) Evolution of eriophyoid mites in relation to their host plants. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 277–300)

    Google Scholar 

  • Littlefield JL, Sobhian R (2000) The host specificity of Phyllocoptes nevadensis Roivainen (Acari: Eriophyidae), a candidate for the biological control of leafy and cypress spurges. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, Bozeman, Montana, USA. Montana State University, Bozeman, pp 621–626

    Google Scholar 

  • Lymbery AJ (1989) Host specificity, host range and host preference. Parasitol Today 5:298

    Article  CAS  PubMed  Google Scholar 

  • MagalhĂŁes S, Forbes MR, Skoracka A, Osakabe M, Chevillon C, McCoy K (2007) Host race formation in Acari. Exp Appl Acarol 42:225–238

    Article  PubMed  Google Scholar 

  • Manson DCM, Oldfield GN (1996) Life forms, deuterogyny, diapause and seasonal development. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 173–183)

    Google Scholar 

  • Marohasy J (1996) Host shifts in biological weed control: real problems, semantic difficulties or poor science? Int J Pest Manag 42:71–75

    Article  Google Scholar 

  • Marohasy J (1998) The design and interpretation of host- specificity tests for weed biological control with particular reference to insect behaviour. Biocontrol News Infor 19:13–20

    Google Scholar 

  • Mathews S, Tsai RC, Kellogg E (2000) Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am J Bot 87:96–107

    Article  CAS  PubMed  Google Scholar 

  • McClay AS, Littlefield JS, Kashefi J (1999) Establishment of Aceria malherbae (Acari: Eriophyidae) as a biological control agent for field bindweed (Convolvulaceae) in the northern great plains. Can Entomol 131:541–548

    Article  Google Scholar 

  • McEvoy PB (1996) Host specificity and biological pest control. Bio Sci 46:401–405

    Google Scholar 

  • Medal JC, Pitelli RA, Santana A, Gandolfo D, Gravena R, Habeck DH (1999) Host specificity of Metriona elatior, a potential biological control agent of tropical soda apple, Solanum viarum, in the USA. Biocontrol 44:421–436

    Article  Google Scholar 

  • Mitter C, Farrell B (1991) Macroevolutionary aspects of insect-plants relationships. In: Bernays EA (ed) Insect-plant interactions, vol 2. CRC Press, Boca Raton, pp 35–78

    Google Scholar 

  • Murdoch WW, Chesson J, Chesson P (1985) Biological control in theory and practice. Am Nat 125:344–366

    Article  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Caterpillar saliva beats plant defences. Nature 416:599–600

    Article  CAS  PubMed  Google Scholar 

  • Nault LR, Styer WE (1969) The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio. Ann Entomol Soc Am 62:1446–1455

    Google Scholar 

  • Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Drozd P, Cizek L (2002a) Host specialization of leaf-chewing insects in a New Guinea rainforest. J Anim Ecol 71:400–412

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002b) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  CAS  PubMed  Google Scholar 

  • Oldfield GN (1996) Diversity and host plant specifity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 199–216)

    Google Scholar 

  • Oldfield G (2005) Biology of Gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science Publishers, Inc., Enfield (NH), USA, pp 35–57

    Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, 332 pp

    Google Scholar 

  • Poulin R, Mouillot D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitol 126:473–480

    Article  CAS  Google Scholar 

  • R’Kha S, Capy P, David JR (1991) Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioural, and genetical analysis. Proc Natl Acad Sci USA 88:1835–1839

    Article  PubMed  Google Scholar 

  • Sabelis MW (1996) Phytoseiidae. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 427–456)

    Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 329–366)

    Google Scholar 

  • Sheppard AW, Hill R, DeClerck-Floate RA, McCIay A, Olckers T, Quimby PC Jr, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108N

    Google Scholar 

  • Sheppard AW, van Klinken RD, Heard TA (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biol Control 35:215–226

    Article  Google Scholar 

  • Skoracka A (2008) Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evol Ecol 22:607–616

    Article  Google Scholar 

  • Skoracka A, Dabert M (2009) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Entomol Res. doi:10.1017/S0007485309990216

  • Skoracka A, KuczyƄski L (2006) Is the cereal rust mite, Abacarus hystrix really a generalist?––testing colonization performance on novel hosts. Exp Appl Acarol 38:1–13

    Article  PubMed  Google Scholar 

  • Skoracka A, KuczyƄski L, Rector BG (2007) Divergent host acceptance behavior suggests host specialization in populations of the polyphagous mite Abacarus hystrix (Acari: Prostigmata: Eriophyidae). Environ Entomol 36:899–909

    Article  PubMed  Google Scholar 

  • Smith L (2005) Host plant specificity and potential impact of Aceria salsolae (Acari: Eriophyidae), an agent proposed for biological control of Russian thistle (Salsola tragus). Biol Control 34:83–92

    Article  Google Scholar 

  • Smith L, Hayat R, Cristofaro M, Tronci C, Tozlu G, Lecce F (2006) Assessment of risk of attack to safflower by Ceratapion basicorne (Coleoptera: Apionidae), a prospective biological control agent of Centaurea solstitialis (Asteraceae). Biol Control 36:337–344

    Article  Google Scholar 

  • Smith L, de Lillo E, Stoeva A, Cristofaro M, Rector B (2008) Challenges to evaluation of eriophyid mites for biological control of invasive plants. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European congress, European Association of Acarolgists, Montpellier France, 21–25 July, European Association of Acarologists, pp 312–316

    Google Scholar 

  • Smith L, Cristofaro M, de Lillo E, Monfreda R, Paolini A (2009a) Field assessment of host plant specificity and potential effectiveness of a prospective biological control agent, Aceria salsolae, of Russian thistle, Salsola tragus. Biol Control 48:237–243

    Article  Google Scholar 

  • Smith L, de Lillo E, Amrine JW Jr (2009b) Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp Appl Acarol. doi:10.1007/s10493-009-9299-2

  • Sobhian R, Andres LA (1978) The response of the skeletonweed gall midge, Cystiphora schmidti (Diptera: Cecidomyiidae), and gall mite, Aceria chondrillae (Eriophyidae) to North American strains of rush skeletonweed (Chondrilla juncea). Environ Entomol 7:506–508

    Google Scholar 

  • Sobhian R, McClay A, Hasan S, Peterschmitt M, Hughes RB (2004) Safety assessment and potential of Cecidophyes rouhollahi (Acari, Eriophyidae) for biological control of Galium spurium (Rubiaceae) in north America. J Appl Entomol 128:258–266

    Article  Google Scholar 

  • Stireman JO, Nason JD, Heard S (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59:2573–2587

    CAS  PubMed  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell Scientific, Oxford p 313

    Google Scholar 

  • Thompson JN (1988) Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42:118–128

    Article  Google Scholar 

  • Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN occasional paper no. 18. Morges, Switzerland: IUCN, 49 pp

    Google Scholar 

  • Van Driesche R, Hoddle M, Center T (2008) Control of pests and weeds by natural enemies: an introduction to biological control. Wiley-Blackwell, Malden p 484

    Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Article  Google Scholar 

  • Ward SA, Leather SR, Pickup J, Harrington R (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? J Anim Ecol 67:763–773

    Article  Google Scholar 

  • Westphal E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distortions. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 231–242)

    Google Scholar 

  • Westphal E, Bronner R, Dreger F (1996) Host plant resistance. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites––their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam (World Crop Pests, vol 6, pp 681–688)

    Google Scholar 

  • Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T (2007) The genetic basis of a plant-insect coevolutionary hey innovation. PNAS 104:20427–20431

    Article  CAS  PubMed  Google Scholar 

  • Willis AJ, Ash JE, Groves RH (1995) The Effects of herbivory by a mite, Aculus hyperici, and nutrient deficiency on growth in Hypericum species. Aust J Bot 43:305–316

    Article  Google Scholar 

  • Willis AJ, Berentson PR, Ash JE (2003) Impacts of a weed biocontrol agent on recovery from water stress in a target and a non-target Hypericum species. J Appl Ecol 40:320–333

    Google Scholar 

  • Stoeva A, Rector BG, Harizanova V (2008) Host-specificity testing on Leipothrix dipsacivagus (Acari: Eriophyidae), a candidate for biological control of Dipsacus spp. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds. CAB International Wallingford, pp 328–332

    Google Scholar 

  • Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptance. Exp Appl Acarol 22:595–601

    Article  Google Scholar 

  • Zhao S (2000) Study of the dispersal and diversity of eriophyoid mites (Acari: Eriophyoidea). PhD. dissertation, West Virginia University, Morgantown, 141 pp

    Google Scholar 

  • Zhao S, Amrine JW Jr (1997) A new method for studying aerial dispersal behavior of eriophyoid mites (Acari: Eriophyoidea). Syst Appl Acarol 2:107–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Skoracka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Skoracka, A., Smith, L., Oldfield, G., Cristofaro, M., Amrine, J.W. (2009). Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. In: Ueckermann, E.A. (eds) Eriophyoid Mites: Progress and Prognoses. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9562-6_6

Download citation

Publish with us

Policies and ethics