Skip to main content

Molecular Cross-Talk Between Nuclear Receptors and Nuclear Factor-κB

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

Nuclear receptors can function as ligand-activated transcription factors but can even so cross-talk with other transcription factors. In this respect, NF-κB, a central regulator of both inflammation and tumorigenesis, can cross-react with and is negatively affected by these nuclear receptors. In current medicine, the nuclear receptor ligands for the glucocorticoid receptor form still the mainstay for treatment of inflammation-based afflictions. However, also other nuclear receptor ligands can affect inflammatory processes. In this respect, the cross-talk of various nuclear receptors with each other has been given renewed attention in recent literature. We will discuss the cross-talk of nuclear receptors with NF-κB and each other in the context of the attenuating control of inflammatory and tumor-promoting mechanisms, using the well described glucocorticoid receptor as a focal point.

Abbreviated title: NR:NF-κB cross-talk

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Activation function

AMPK:

AMP-activated protein kinase

AP-1:

Activator protein-1

APOC3:

Apolipoprotein C-III

ARE:

Adenylate-uridylate (AU)-rich element

ATF:

Activating transcription factor

Bcl:

B-cell lymphoma

Brg:

Brahma-related gene

Brm:

Brahma

C:

Carboxy

cAMP:

Cyclic adenosine monophosphate

CAR:

Constitutive androstane receptor (NR1I3)

C/EBP:

CCAAT enhancer-binding protein

CBP:

CREB-binding protein

CC10:

Clara cell secretory 10 kDa protein

cdc37:

Cell division cycle 37 protein

Cdk:

Cyclin-dependent kinase

c-FLIP:

Cellular-FLICE inhibitory protein

ChIP:

Chromatin immunoprecipitation

CK2:

Casein kinase 2

COUP-TFII:

Chicken ovalbumin upstream promoter-transcription factor II (NR2F2)

COX-2:

Cyclo-oxygenase-2

CREB:

cAMP-responsive element-binding protein

CRM1:

Chromosome region maintenance, synonym: exportin1

Cyp3a4:

Cytochrome P450, subfamily IIIA, polypeptide 4

DBD:

DNA-binding domain

Dexras1:

DEX-induced Ras1

Dok-1:

Downstream of tyrosine kinase 1

DRIP205:

Vitamin D receptor-interacting protein complex component (MED1)

DUSP:

Dual specificity phosphatase

eNOS:

Endothelial nitric oxide synthetase

EMSA:

Electrophoretic mobility shift assay

ER:

Estrogen receptor (NR3A1, NR3A2)

ERE:

Estrogen response elemnt

ERK:

Extracellular signal-regulated kinase

ERR:

Estrogen-related receptor (NR3B1, NR3B2, NR3B3)

ELKS:

Protein rich in amino acids E, L, K and S

FKBP:

FK506-binding protein

FXR:

Farnesoid X receptor (NR1H4)

GC:

Glucocorticoid

GILZ:

GC-induced leucine zipper

GR:

Glucocorticoid receptor (NR3C1)

GRE:

Glucocorticoid response element

H3:

Histone H3

H4:

Histone H4

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HNF-4:

Hepatocyte nuclear factor-4 (NR2A1, NR2A2)

Hsp:

Heat shock protein

ICAM:

Intercellular adhesion molecule

Ifit1:

Interferon-induced with tetratricopeptide repeats 1

IFN:

Interferon

IκB:

Inhibitor of NF-κB

IKK:

IκB kinase

IL:

Interleukin

iNOS:

Inducible nitric oxide synthetase

IP-10:

Interferon-inducible protein of 10 kDa

IRF:

Interferon regulatory factor

JNK:

c-Jun N-terminal kinase

KO:

Knock-out

LBD:

Ligand-binding domain

LPS:

Lipopolysaccharide

LXR:

Liver X receptor (NR1H2, NR1H3)

MAPK:

Mitogen-activated protein kinase

MEKK:

MKK kinase, synonyms: MKKK, MAPKKK, MAP3K

MHC:

Major histocompatibility complex

MK:

MAPK-activated protein kinase

MKK:

MAPK kinase, synonyms: MEK, MAPKK, MAP2K

MMP:

Matrix metalloproteinase

MMTV:

Mouse mammary tumor virus

MR:

Mineralocorticoid receptor (NR3C2)

MSK:

Mitogen-and stress-activated protein kinase

NCoR:

Nuclear corepressor

NEMO:

NF-κB essential modulator, synonym: IKKγ

NGFIB:

Nerve Growth factor IB (NR4A1)

NF-κB:

Nuclear Factor-κB

NIK:

NF-κB-inducing kinase

nGRE:

negative GRE

NLS:

Nuclear localization signal

NOR1:

Neuron-derived orphan receptor 1 (NR4A3)

NR:

Nuclear receptor

Nurr1:

Nuclear receptor related 1 (NR4A2)

PAI-1:

Plasminogen activator inhibitor type 1

PGC-1:

PPARγ coactivator-1

Pin1:

Protein NIMA(never in mitosis gene a)-interacting

PKA:

Protein kinase A

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor-α (NR1C1, NR1C2, NR1C3)

PR:

Progesterone receptor (NR3C3)

P-TEFb:

Positive transcription elongation factor b

PXR:

Pregnane X receptor (NR1I2)

RA:

Retinoic acid

RANKL:

Receptor activator of NF-κB ligand

RANTES:

Regulated upon activation, normal T-cell expressed and secreted

RIP:

Receptor-interacting protein

Rel-HD:

Rel homology domain

RNA Pol II:

RNA polymerase II

SGK:

Serum and glucocorticoid-inducible kinase

SHP:

Small heterodimer partner (NR0B2)

SLAP:

Src-like adaptor protein

SLPI:

Secretory leukocyte protease inhibitor 1

SMRT:

Silencing mediator for retinoid and thyroid-hormone receptors

SOCS:

Suppressor of cytokine signalling

SP-A:

Surfactant protein A

SRC:

Steroid receptor coactivator

SUMO:

Small ubiquitin-related modifier

SWI/SNF-:

Switching of yeast mating type/sucrose non-fermenting

TA:

Transactivation domain

TAK1:

TGF-activated kinase 1

TAB2/3:

TAK-binding protein

TANK:

TRAF family member-associated NF-κB activator

TBK1:

TANK-binding kinase 1

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor-α

TNF-R:

TNF-receptor

TR:

Thyroid hormone receptor (NR1A1, NR1A2)

TRADD:

TNF-R-associated death domain

TRAF:

TNF-R-associated factor

Trip6:

Thyroid receptor-interacting protein 6

TTP:

Tristetraprolin

VCAM:

Vascular cell adhesion molecule

VDR:

Vitamin D receptor (NR1I1)

ZDF rat:

Zucker diabetic fatty rat

References

  1. Aggarwal BB, Shishodia S, Sandur SK et al (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72: 1605–1621

    Article  PubMed  CAS  Google Scholar 

  2. Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A (2007) The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (R Coll Radiol) 19: 154–161

    Article  CAS  Google Scholar 

  3. Kucharczak J, Simmons MJ, Fan Y, Gelinas C (2003) To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22: 8961–8982

    Article  PubMed  CAS  Google Scholar 

  4. Mora AL, Corn RA, Stanic AK et al (2003) Antiapoptotic function of NF-kappaB in T lymphocytes is influenced by their differentiation status: roles of Fas, c-FLIP, and Bcl-xL. Cell Death Differ 10: 1032–1044

    Article  PubMed  CAS  Google Scholar 

  5. Glyn J (1998) The discovery and early use of cortisone. J R Soc Med 91: 513–517

    PubMed  CAS  Google Scholar 

  6. Hollenberg SM, Weinberger C, Ong ES et al (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318: 635–641

    Article  PubMed  CAS  Google Scholar 

  7. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6: 463–475

    Article  PubMed  CAS  Google Scholar 

  8. Reichardt HM, Tronche F, Berger S et al (2000) New insights into glucocorticoid and mineralocorticoid signaling: lessons from gene targeting. Adv Pharmacol 47: 1–21

    Article  PubMed  CAS  Google Scholar 

  9. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89

    Article  PubMed  CAS  Google Scholar 

  10. McDonough AK, Curtis JR, Saag KG (2008) The epidemiology of glucocorticoid-associated adverse events. Curr Opin Rheumatol 20: 131–137

    Article  PubMed  Google Scholar 

  11. Schäcke H, Schottelius A, Docke WD et al (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA 101: 227–232

    Article  PubMed  CAS  Google Scholar 

  12. Barnes PJ (2006) Corticosteroids: the drugs to beat. Eur J Pharmacol 533: 2–14

    Article  PubMed  CAS  Google Scholar 

  13. Encke J, Uhl W, Stremmel W, Sauer P (2004) Immunosuppression and modulation in liver transplantation. Nephrol Dial Transplant 19 Suppl 4: iv22–25

    Article  PubMed  CAS  Google Scholar 

  14. Jehn BM, Osborne BA (1997) Gene regulation associated with apoptosis. Crit Rev Eukaryot Gene Expr 7: 179–193

    Article  PubMed  CAS  Google Scholar 

  15. Chun R (2009) Lymphoma: which chemotherapy protocol and why? Top Companion Anim Med 24: 157–162

    Article  PubMed  Google Scholar 

  16. Real PJ, Ferrando AA (2009) NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia 23: 1374–1377

    Article  PubMed  CAS  Google Scholar 

  17. Rosenstein LJ, Link BK (2008) Optimizing chemotherapeutic strategies for peripheral T-cell lymphomas. Clin Lymphoma Myeloma 8 (Suppl 5): S180–186

    Article  PubMed  CAS  Google Scholar 

  18. Sionov RV, Spokoini R, Kfir-Erenfeld S et al (2008) Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 101: 127–248

    Article  PubMed  CAS  Google Scholar 

  19. Han Z, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28: 197–208

    Article  PubMed  CAS  Google Scholar 

  20. Hart LA, Krishnan VL, Adcock IM et al (1998) Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am J Respir Crit Care Med 158: 1585–1592

    Article  PubMed  CAS  Google Scholar 

  21. van Den Brink GR, ten Kate FJ, Ponsioen CY et al (2000) Expression and activation of NF-kappa B in the antrum of the human stomach. J Immunol 164: 3353–3359

    Google Scholar 

  22. Barnes PJ (2006) Transcription factors in airway diseases. Lab Invest 86: 867–872

    Article  PubMed  CAS  Google Scholar 

  23. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288

    Article  PubMed  CAS  Google Scholar 

  24. D’Acquisto F, Ianaro A (2006) From willow bark to peptides: the ever widening spectrum of NF-kappaB inhibitors. Curr Opin Pharmacol 6: 387–392

    Article  PubMed  CAS  Google Scholar 

  25. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82: 434–448

    Article  PubMed  CAS  Google Scholar 

  26. Liou HC (2002) Regulation of the immune system by NF-kappaB and IkappaB. J Biochem Mol Biol 35: 537–546

    Article  PubMed  CAS  Google Scholar 

  27. Smahi A, Courtois G, Rabia SH et al (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11: 2371–2375

    Article  PubMed  CAS  Google Scholar 

  28. Pikarsky E, Porat RM, Stein I et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466

    Article  PubMed  CAS  Google Scholar 

  29. Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 13: 759–772

    Article  PubMed  CAS  Google Scholar 

  30. Polito AJ, Proud D (1998) Epithelia cells as regulators of airway inflammation. J Allergy Clin Immunol 102: 714–718

    Article  PubMed  CAS  Google Scholar 

  31. Barnes PJ, Chung KF, Page CP (1998) Inflammatory mediators of asthma: an update. Pharmacol Rev 50: 515–596

    PubMed  CAS  Google Scholar 

  32. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-kappaB ­signaling module. Oncogene 25: 6706–6716

    Article  PubMed  CAS  Google Scholar 

  34. Dijsselbloem N, Vanden Berghe W, De Naeyer A, Haegeman G (2004) Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol 68: 1171–1185

    Article  PubMed  CAS  Google Scholar 

  35. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27: 378–386

    Article  PubMed  CAS  Google Scholar 

  36. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132: 344–362

    Article  PubMed  CAS  Google Scholar 

  37. Verstrepen L, Bekaert T, Chau TL et al (2008) TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci 65: 2964–2978

    Article  PubMed  CAS  Google Scholar 

  38. Gloire G, Dejardin E, Piette J (2006) Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol 72: 1081–1089

    Article  PubMed  CAS  Google Scholar 

  39. Baldwin AS, Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649–683

    Article  PubMed  CAS  Google Scholar 

  40. Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8: 837–848

    Article  PubMed  CAS  Google Scholar 

  41. Boone E, Vandevoorde V, De Wilde G, Haegeman G (1998) Activation of p42/p44 mitogen-activated protein kinases (MAPK) and p38 MAPK by tumor necrosis factor (TNF) is mediated through the death domain of the 55-kDa TNF receptor. FEBS Lett 441: 275–280

    Article  PubMed  CAS  Google Scholar 

  42. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68: 320–344

    Article  PubMed  CAS  Google Scholar 

  43. Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13

    Google Scholar 

  44. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9: 401–410

    Article  PubMed  CAS  Google Scholar 

  45. Hinz M, Broemer M, Arslan SC et al (2007) Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J Biol Chem 282: 32311–32319

    Article  PubMed  CAS  Google Scholar 

  46. Ducut Sigala JL, Bottero V, Young DB et al (2004) Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304: 1963–1967

    Article  PubMed  CAS  Google Scholar 

  47. Brown K, Gerstberger S, Carlson L et al (1995) Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  48. Hu Y, Baud V, Delhase M et al (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284: 316–320

    Article  PubMed  CAS  Google Scholar 

  49. Burkhart BA, Hebbar PB, Trotter KW, Archer TK (2005) Chromatin-dependent E1A activity modulates NF-kappaB RelA-mediated repression of glucocorticoid receptor-dependent transcription. J Biol Chem 280: 6349–6358

    Article  PubMed  CAS  Google Scholar 

  50. Natoli G (2006) Tuning up inflammation: how DNA sequence and chromatin organization control the induction of inflammatory genes by NF-kappaB. FEBS Lett 580: 2843–2849

    Article  PubMed  CAS  Google Scholar 

  51. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407–412

    Article  PubMed  CAS  Google Scholar 

  52. Natoli G, Saccani S, Bosisio D, Marazzi I (2005) Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 6: 439–445

    Article  PubMed  CAS  Google Scholar 

  53. Saccani S, Pantano S, Natoli G (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193: 1351–1359

    Article  PubMed  CAS  Google Scholar 

  54. Racki LR, Narlikar GJ (2008) ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr Opin Genet Dev 18: 137–144.

    Article  PubMed  CAS  Google Scholar 

  55. Vanden Berghe W, Ndlovu MN, Hoya-Arias R et al (2006) Keeping up NF-kappaB appearances: epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 72: 1114–1131

    Article  PubMed  CAS  Google Scholar 

  56. Reber L, Vermeulen L, Haegeman G, Frossard N (2009) Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS ONE 4: e4393

    Article  PubMed  CAS  Google Scholar 

  57. Vanden Berghe W, Plaisance S, Boone E et al (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273: 3285–3290

    Article  PubMed  CAS  Google Scholar 

  58. Vermeulen L, De Wilde G, Van Damme P et al (2003) Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22: 1313–1324

    Article  PubMed  CAS  Google Scholar 

  59. Vermeulen L, Vanden Berghe W, Beck IM et al (2009) The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 34:311–318

    Article  PubMed  CAS  Google Scholar 

  60. Beck IM, Vanden Berghe W, Vermeulen L et al (2009) Crosstalk in inflammation: The interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 30: 830–882

    Google Scholar 

  61. Neumann M, Naumann M (2007) Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J 21: 2642–2654

    Article  PubMed  CAS  Google Scholar 

  62. Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25: 6717–6730

    Article  PubMed  CAS  Google Scholar 

  63. Chen LF, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21: 6539–6548

    Article  PubMed  CAS  Google Scholar 

  64. Chen LF, Williams SA, Mu Y et al (2005) NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25: 7966–7975

    Article  PubMed  CAS  Google Scholar 

  65. Kiernan R, Bres V, Ng RW et al (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278: 2758–2766

    Article  PubMed  CAS  Google Scholar 

  66. Mabb AM, Miyamoto S (2007) SUMO and NF-kappaB ties. Cell Mol Life Sci 64: 1979–1996

    Article  PubMed  CAS  Google Scholar 

  67. De Bosscher K, Vanden Berghe W, Haegeman G (2006) Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 25: 6868–6886

    Article  PubMed  CAS  Google Scholar 

  68. Gossye V, Haegeman G, De Bosscher K (2008) Therapeutic implications of the nuclear factor-kappaB/nuclear receptor cross-talk. Front Biosci 13: 4122–4143

    Article  PubMed  CAS  Google Scholar 

  69. Germain P, Staels B, Dacquet C,et al (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58: 685–704

    Article  PubMed  CAS  Google Scholar 

  70. Kassel O, Herrlich P (2007) Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 275: 13–29

    Article  PubMed  CAS  Google Scholar 

  71. Robinson-Rechavi M, Escriva Garcia H, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116: 585–586

    Article  PubMed  Google Scholar 

  72. Delerive P, De Bosscher K, Besnard S et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274: 32048–32054

    Article  PubMed  CAS  Google Scholar 

  73. Straus DS, Glass CK (2007) Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28: 551–558

    Article  PubMed  CAS  Google Scholar 

  74. Duma D, Jewell CM, Cidlowski JA (2006) Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol 102: 11–21

    Article  PubMed  CAS  Google Scholar 

  75. Ito K (2007) Impact of post-translational modifications of proteins on the inflammatory process. Biochem Soc Trans 35: 281–283

    Article  PubMed  CAS  Google Scholar 

  76. Faus H, Haendler B (2006) Post-translational modifications of steroid receptors. Biomed Pharmacother 60: 520–528

    Article  PubMed  CAS  Google Scholar 

  77. Rochette-Egly C (2003) Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15: 355–366

    Article  PubMed  CAS  Google Scholar 

  78. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40: 41–58

    PubMed  CAS  Google Scholar 

  79. Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4: 46–56

    Article  PubMed  CAS  Google Scholar 

  80. Leclercq G, Lacroix M, Laios I, Laurent G (2006) Estrogen receptor alpha: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets 6: 39–64

    Article  PubMed  CAS  Google Scholar 

  81. Savory JG, Hsu B, Laquian IR et al (1999) Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19: 1025–1037

    PubMed  CAS  Google Scholar 

  82. Haché RJ, Tse R, Reich T et al (1999) Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J Biol Chem 274: 1432–1439

    Article  PubMed  Google Scholar 

  83. Kumar S, Chaturvedi NK, Nishi M et al (2004) Shuttling components of nuclear import machinery involved in nuclear translocation of steroid receptors exit nucleus via exportin-1/CRM-1 independent pathway. Biochim Biophys Acta 1691: 73–77

    Article  PubMed  CAS  Google Scholar 

  84. Carrigan A, Walther RF, Salem HA et al (2007) An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation. J Biol Chem 282: 10963–10971

    Article  PubMed  CAS  Google Scholar 

  85. Sackey FN, Haché RJ, Reich T et al (1996) Determinants of subcellular distribution of the glucocorticoid receptor. Mol Endocrinol 10: 1191–1205

    Article  PubMed  CAS  Google Scholar 

  86. McNally JG, Müller WG, Walker D et al (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287: 1262–1265

    Article  PubMed  CAS  Google Scholar 

  87. Schaaf MJ, Lewis-Tuffin LJ, Cidlowski JA (2005) Ligand-selective targeting of the glucocorticoid receptor to nuclear subdomains is associated with decreased receptor mobility. Mol Endocrinol 19: 1501–1515

    Article  PubMed  CAS  Google Scholar 

  88. Meijsing SH, Elbi C, Luecke HF et al (2007) The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol Cell Biol 27: 2442–2451

    Article  PubMed  CAS  Google Scholar 

  89. Stavreva DA, Wiench M, John S et al (2009) Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol 11: 1093–1102

    Article  PubMed  CAS  Google Scholar 

  90. John S, Sabo PJ, Johnson TA et al (2008) Interaction of the glucocorticoid receptor with the chromatin landscape. Mol Cell 29: 611–624

    Article  PubMed  CAS  Google Scholar 

  91. De Bosscher K, Haegeman G (2009) Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 23: 281–291

    Article  PubMed  CAS  Google Scholar 

  92. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24: 488–522

    Article  PubMed  CAS  Google Scholar 

  93. Kolla V, Robertson NM, Litwack G (1999) Identification of a mineralocorticoid/glucocorticoid response element in the human Na/K ATPase alpha1 gene promoter. Biochem Biophys Res Commun 266: 5–14

    Article  CAS  Google Scholar 

  94. De Kloet ER, Derijk R (2004) Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR ­balance. Ann NY Acad Sci 1032: 14–34

    Article  PubMed  CAS  Google Scholar 

  95. Funder JW (2005) Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 10: 15–22

    Article  PubMed  CAS  Google Scholar 

  96. De Bosscher K, Van Craenenbroeck K, Meijer OC, Haegeman G (2008) Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur J Pharmacol 583: 290–302

    Article  PubMed  CAS  Google Scholar 

  97. Hammer F, Stewart PM (2006) Cortisol metabolism in hypertension. Best Pract Res Clin Endocrinol Metab 20: 337–353

    Article  PubMed  CAS  Google Scholar 

  98. Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14: 675–689

    Article  PubMed  CAS  Google Scholar 

  99. Pascual G, Fong AL, Ogawa S et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437: 759–763

    Article  PubMed  CAS  Google Scholar 

  100. Jennewein C, Kuhn AM, Schmidt MV et al (2008) Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. J Immunol 181: 5646–5652

    PubMed  CAS  Google Scholar 

  101. Perissi V, Aggarwal A, Glass CK et al (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511–526

    Article  PubMed  CAS  Google Scholar 

  102. Torchia J, Glass C, Rosenfeld MG (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10: 373–383

    Article  PubMed  CAS  Google Scholar 

  103. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141

    PubMed  CAS  Google Scholar 

  104. Davie JR, Spencer VA (1999) Control of histone modifications. J Cell Biochem Suppl 32–33: 141–148

    Article  Google Scholar 

  105. Soloaga A, Thomson S, Wiggin GR et al (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22: 2788–2797

    Article  PubMed  CAS  Google Scholar 

  106. Davie JR (2003) MSK1 and MSK2 mediate mitogen- and stress-induced phosphorylation of histone H3: a controversy resolved. Sci STKE 2003: PE33

    Google Scholar 

  107. Anest V, Hanson JL, Cogswell PC et al (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423: 659–663

    Article  PubMed  CAS  Google Scholar 

  108. Yamamoto Y, Verma UN, Prajapati S et al (2003) Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423: 655–659

    Article  PubMed  CAS  Google Scholar 

  109. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114: 2363–2373

    PubMed  CAS  Google Scholar 

  110. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459

    Article  PubMed  CAS  Google Scholar 

  111. Aarenstrup L, Flindt EN, Otkjaer K et al (2008) HDAC activity is required for p65/RelA-dependent repression of PPARdelta-mediated transactivation in human keratinocytes. J Invest Dermatol 128: 1095–1106

    Article  PubMed  CAS  Google Scholar 

  112. McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators – an update. Endocrinology 143: 2461–2465

    Article  PubMed  CAS  Google Scholar 

  113. Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21: 381–388

    Article  PubMed  CAS  Google Scholar 

  114. Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119: 157–167

    Article  PubMed  CAS  Google Scholar 

  115. Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS (2000) Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-alpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology 141: 3534–3545

    Article  PubMed  CAS  Google Scholar 

  116. Bramlett KS, Wu Y, Burris TP (2001) Ligands specify coactivator nuclear receptor (NR) box affinity for estrogen receptor subtypes. Mol Endocrinol 15: 909–922

    Article  PubMed  CAS  Google Scholar 

  117. Coghlan MJ, Jacobson PB, Lane B et al (2003) A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol 17: 860–869

    Article  PubMed  CAS  Google Scholar 

  118. He Y, Simons SS, Jr. (2007) STAMP, a novel predicted factor assisting TIF2 actions in ­glucocorticoid receptor-mediated induction and repression. Mol Cell Biol 27: 1467–1485

    Article  PubMed  CAS  Google Scholar 

  119. Li X, Wong J, Tsai SY et al (2003) Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol Cell Biol 23: 3763–3773

    Article  PubMed  CAS  Google Scholar 

  120. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR (2002) Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci USA 99: 16701–16706

    Article  PubMed  CAS  Google Scholar 

  121. Cvoro A, Tzagarakis-Foster C, Tatomer D et al (2006) Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol Cell 21: 555–564

    Article  PubMed  CAS  Google Scholar 

  122. Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–642

    Article  PubMed  CAS  Google Scholar 

  123. Shang Y, Hu X, DiRenzo J et al (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852

    Article  PubMed  CAS  Google Scholar 

  124. Métivier R, Penot G, Hubner MR et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763

    Article  PubMed  Google Scholar 

  125. Chakalova L, Debrand E, Mitchell JA et al (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6: 669–677

    Article  PubMed  CAS  Google Scholar 

  126. George AA, Schiltz RL, Hager GL (2009) Dynamic access of the glucocorticoid receptor to response elements in chromatin. Int J Biochem Cell Biol 41: 214–224

    Article  PubMed  CAS  Google Scholar 

  127. Doucas V, Shi Y, Miyamoto S, West A, Verma I et al (2000) Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 97: 11893–11898

    Article  PubMed  CAS  Google Scholar 

  128. Auphan N, DiDonato JA, Rosette C et al (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270: 286–290

    Article  PubMed  CAS  Google Scholar 

  129. Ramanan S, Kooshki M, Zhao W et al (2008) PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 45: 1695–1704

    Article  PubMed  CAS  Google Scholar 

  130. Oakley RH, Sar M, Cidlowski JA (1996) The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem 271: 9550–9559

    Article  PubMed  CAS  Google Scholar 

  131. Yudt MR, Cidlowski JA (2001) Molecular identification and characterization of a and b forms of the glucocorticoid receptor. Mol Endocrinol 15: 1093–1103

    Article  PubMed  CAS  Google Scholar 

  132. Lu NZ, Cidlowski JA (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18: 331–342

    Article  PubMed  CAS  Google Scholar 

  133. Turner JD, Schote AB, Macedo JA et al (2006) Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 72: 1529–1537

    Article  PubMed  CAS  Google Scholar 

  134. Lu NZ, Cidlowski JA (2006) Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol 16: 301–307

    Article  PubMed  CAS  Google Scholar 

  135. Lu NZ, Collins JB, Grissom SF, Cidlowski JA (2007) Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol Cell Biol 27: 7143–7160

    Article  PubMed  CAS  Google Scholar 

  136. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med 353: 1711–1723

    Article  PubMed  CAS  Google Scholar 

  137. Clark AR (2007) Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 275: 79–97

    Article  PubMed  CAS  Google Scholar 

  138. Rogatsky I, Wang JC, Derynck MK et al (2003) Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc Natl Acad Sci USA 100: 13845–13850

    Article  PubMed  CAS  Google Scholar 

  139. So AY, Chaivorapol C, Bolton EC et al (2007) Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet 3: e94

    Article  PubMed  CAS  Google Scholar 

  140. Richardson J, Vinson C, Bodwell J (1999) Cyclic adenosine-3′,5′-monophosphate-mediated activation of a glutamine synthetase composite glucocorticoid response element. Mol Endocrinol 13: 546–554

    Article  PubMed  CAS  Google Scholar 

  141. Stöcklin E, Wissler M, Gouilleux F, Groner B (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726–728

    Article  PubMed  Google Scholar 

  142. Johansson-Haque K, Palanichamy E, Okret S (2008) Stimulation of MAPK-phosphatase 1 gene expression by glucocorticoids occurs through a tethering mechanism involving C/EBP. J Mol Endocrinol 41: 239–249

    Article  PubMed  CAS  Google Scholar 

  143. De Martino MU, Bhattachryya N, Alesci S et al (2004) The glucocorticoid receptor and the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II interact with and mutually affect each other’s transcriptional activities: implications for intermediary metabolism. Mol Endocrinol 18: 820–833

    Article  PubMed  CAS  Google Scholar 

  144. Doppler W, Windegger M, Soratroi C et al (2001) Expression level-dependent contribution of glucocorticoid receptor domains for functional interaction with STAT5. Mol Cell Biol 21: 3266–3279

    Article  PubMed  CAS  Google Scholar 

  145. Reichardt HM, Tuckermann JP, Göttlicher M et al (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20: 7168–7173

    Article  PubMed  CAS  Google Scholar 

  146. Newton R, Holden NS (2007) Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 72: 799–809

    Article  PubMed  CAS  Google Scholar 

  147. Belvisi MG, Wicks SL, Battram CH et al (2001) Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol 166: 1975–1982

    PubMed  CAS  Google Scholar 

  148. De Bosscher K, Schmitz ML, Vanden Berghe W et al (1997) Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci USA 94: 13504–13509

    Article  PubMed  CAS  Google Scholar 

  149. Wissink S, van Heerde EC, vand der Burg B, van der Saag PT (1998) A dual mechanism mediates repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 12: 355–363

    Article  PubMed  CAS  Google Scholar 

  150. Chaudhary LR, Avioli LV (1996) Regulation of interleukin-8 gene expression by interleukin-1beta, osteotropic hormones, and protein kinase inhibitors in normal human bone marrow stromal cells. J Biol Chem 271: 16591–16596

    Article  PubMed  CAS  Google Scholar 

  151. Chivers JE, Gong W, King EM et al (2006) Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids. Mol Pharmacol 70: 2084–2095

    Article  PubMed  CAS  Google Scholar 

  152. Henderson BR, Kefford RF (1993) Dexamethasone decreases urokinase plasminogen activator mRNA stability in MAT 13762 rat mammary carcinoma cells. Br J Cancer 67: 99–101

    Article  PubMed  CAS  Google Scholar 

  153. Newton R, Seybold J, Kuitert LM et al (1998) Repression of cyclooxygenase-2 and prostaglandin E2 release by dexamethasone occurs by transcriptional and post-­transcriptional mechanisms involving loss of polyadenylated mRNA. J Biol Chem 273: 32312–32321

    Article  PubMed  CAS  Google Scholar 

  154. Tobler A, Meier R, Seitz M et al (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79: 45–51

    PubMed  CAS  Google Scholar 

  155. Chang MM, Juarez M, Hyde DM, Wu R (2001) Mechanism of dexamethasone-mediated interleukin-8 gene suppression in cultured airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 280: L107–115

    PubMed  CAS  Google Scholar 

  156. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS, Jr. (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283–286

    Article  PubMed  CAS  Google Scholar 

  157. Scheinman RI, Gualberto A, Jewell CM et al (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15: 943–953

    PubMed  CAS  Google Scholar 

  158. De Bosscher K, Vanden Berghe W, Beck IM et al (2005) A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci USA 102: 15827–15832

    Article  PubMed  CAS  Google Scholar 

  159. Nissen RM, Yamamoto KR (2000) The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 14: 2314–2329

    Article  PubMed  CAS  Google Scholar 

  160. Luecke HF, Yamamoto KR (2005) The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Genes Dev 19: 1116–1127

    Article  PubMed  CAS  Google Scholar 

  161. Lidén J, Rafter I, Truss M et al (2000) Glucocorticoid effects on NF-kappaB binding in the transcription of the ICAM-1 gene. Biochem Biophys Res Commun 273: 1008–1014

    Article  PubMed  CAS  Google Scholar 

  162. Chinenov Y, Rogatsky I (2007) Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol 275: 30–42

    Article  PubMed  CAS  Google Scholar 

  163. Ishmael FT, Fang X, Galdiero MR et al (2008) Role of the RNA-binding protein tristetraprolin in glucocorticoid-mediated gene regulation. J Immunol 180: 8342–8353

    PubMed  CAS  Google Scholar 

  164. Eddleston J, Herschbach J, Wagelie-Steffen AL et al (2007) The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J Allergy Clin Immunol 119: 115–122

    Article  PubMed  CAS  Google Scholar 

  165. Kim MJ, Chae JS, Kim KJ et al (2007) Negative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1. EMBO J 26: 3075–3085

    Article  PubMed  CAS  Google Scholar 

  166. Ayroldi E, Riccardi C (2009) Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 23: 3649–3658

    Article  PubMed  CAS  Google Scholar 

  167. Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 119: 4607–4615

    Article  PubMed  CAS  Google Scholar 

  168. Maier JV, Brema S, Tuckermann J et al (2007) Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol Endocrinol 21: 2663–2671

    Article  PubMed  CAS  Google Scholar 

  169. Abraham SM, Lawrence T, Kleiman A et al (2006) Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med 203: 1883–1889

    Article  PubMed  CAS  Google Scholar 

  170. Kassel O, Sancono A, Kratzschmar J et al (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20: 7108–7116

    Article  PubMed  CAS  Google Scholar 

  171. King EM, Holden NS, Gong W et al (2009) Inhibition of NF-kappaB-dependent transcription by MKP-1: transcriptional repression by glucocorticoids occurring via p38 MAPK. J Biol Chem 284: 26803–26815

    Article  PubMed  CAS  Google Scholar 

  172. Miller AL, Webb MS, Copik AJ et al (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19: 1569–1583

    Article  PubMed  CAS  Google Scholar 

  173. Clark AR, Martins JR, Tchen CR (2008) Role of dual specificity phosphatases in biological responses to glucocorticoids. J Biol Chem 283: 25765–25769

    Article  PubMed  CAS  Google Scholar 

  174. Wang X, Liu Y (2007) Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 19: 1372–1382

    Article  PubMed  CAS  Google Scholar 

  175. Ayroldi E, Zollo O, Macchiarulo A et al (2002) Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Mol Cell Biol 22: 7929–7941

    Article  PubMed  CAS  Google Scholar 

  176. Ayroldi E, Zollo O, Bastianelli A et al (2007) GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. J Clin Invest 117: 1605–1615

    Article  PubMed  CAS  Google Scholar 

  177. Cissel DS, Beaven MA (2000) Disruption of Raf-1/heat shock protein 90 complex and Raf signaling by dexamethasone in mast cells. J Biol Chem 275: 7066–7070

    Article  PubMed  CAS  Google Scholar 

  178. Rider LG, Hirasawa N, Santini F, Beaven MA (1996) Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells. J Immunol 157: 2374–2380

    PubMed  CAS  Google Scholar 

  179. Berrebi D, Bruscoli S, Cohen N et al (2003) Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738

    Article  PubMed  CAS  Google Scholar 

  180. Mittelstadt PR, Ashwell JD (2001) Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 276: 29603–29610

    Article  PubMed  CAS  Google Scholar 

  181. Di Marco B, Massetti M, Bruscoli S et al (2007) Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Res 35: 517–528

    Article  PubMed  Google Scholar 

  182. Ayroldi E, Migliorati G, Bruscoli S et al (2001) Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood 98: 743–753

    Article  PubMed  CAS  Google Scholar 

  183. Tonko M, Ausserlechner MJ, Bernhard D et al (2001) Gene expression profiles of proliferating vs. G1/G0 arrested human leukemia cells suggest a mechanism for glucocorticoid-induced apoptosis. FASEB J 15: 693–699

    Article  PubMed  CAS  Google Scholar 

  184. Yoshida NL, Miyashita T, U M et al (2002) Analysis of gene expression patterns during glucocorticoid-induced apoptosis using oligonucleotide arrays. Biochem Biophys Res Commun 293: 1254–1261

    Article  PubMed  CAS  Google Scholar 

  185. Chauhan S, Leach CH, Kunz S et al (2003) Glucocorticoid regulation of human eosinophil gene expression. J Steroid Biochem Mol Biol 84: 441–452

    Article  PubMed  CAS  Google Scholar 

  186. Schmidt S, Rainer J, Riml S et al (2006) Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 107: 2061–2069

    Article  PubMed  CAS  Google Scholar 

  187. Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response. J Exp Med 200: 107–113

    Article  PubMed  CAS  Google Scholar 

  188. Ryo A, Suizu F, Yoshida Y et al (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12: 1413–1426

    Article  PubMed  CAS  Google Scholar 

  189. Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26: 436–447

    Article  PubMed  CAS  Google Scholar 

  190. Haffner MC, Jurgeit A, Berlato C et al (2008) Interaction and functional interference of glucocorticoid receptor and SOCS1. J Biol Chem 283: 22089–22096

    Article  PubMed  CAS  Google Scholar 

  191. Shibata M, Katsuyama M, Onodera T et al (2009) Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines. J Invest Dermatol 129: 375–382

    Article  PubMed  CAS  Google Scholar 

  192. Arancibia S, Benitez D, Nunez LE et al (2009) Phosphatidylinositol 3-kinase interacts with the glucocorticoid receptor upon TLR2 activation. J Cell Mol Med (Epub)

    Google Scholar 

  193. Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20: 55–72

    Article  PubMed  CAS  Google Scholar 

  194. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–1005

    Article  PubMed  CAS  Google Scholar 

  195. Carrick DM, Lai WS, Blackshear PJ (2004) The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res Ther 6: 248–264

    Article  PubMed  CAS  Google Scholar 

  196. Carballo E, Cao H, Lai WS et al (2001) Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 276: 42580–42587

    Article  PubMed  CAS  Google Scholar 

  197. Chrestensen CA, Schroeder MJ, Shabanowitz J et al (2004) MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 279: 10176–10184

    Article  PubMed  CAS  Google Scholar 

  198. Hitti E, Iakovleva T, Brook M et al (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26: 2399–2407

    Article  PubMed  CAS  Google Scholar 

  199. Brook M, Tchen CR, Santalucia T et al (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26: 2408–2418

    Article  PubMed  CAS  Google Scholar 

  200. Neininger A, Kontoyiannis D, Kotlyarov A et al (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 277: 3065–3068

    Article  PubMed  CAS  Google Scholar 

  201. Stoecklin G, Stubbs T, Kedersha N et al (2004) MK2-induced tristetraprolin:14-3-3 ­complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23: 1313–1324

    Article  PubMed  CAS  Google Scholar 

  202. Dean JL, Sarsfield SJ, Tsounakou E, Saklatvala J (2003) p38 Mitogen-activated protein kinase stabilizes mRNAs that contain cyclooxygenase-2 and tumor necrosis factor AU-rich elements by inhibiting deadenylation. J Biol Chem 278: 39470–39476

    Article  PubMed  CAS  Google Scholar 

  203. Smoak K, Cidlowski JA (2006) Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 26: 9126–9135

    Article  PubMed  CAS  Google Scholar 

  204. Stojadinovic O, Lee B, Vouthounis C et al (2007) Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation. J Biol Chem 282: 4021–4034

    Article  PubMed  CAS  Google Scholar 

  205. Lasa M, Abraham SM, Boucheron C et al (2002) Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol 22: 7802–7811

    Article  PubMed  CAS  Google Scholar 

  206. Lasa M, Brook M, Saklatvala J, Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 21: 771–780

    Article  PubMed  CAS  Google Scholar 

  207. Stellato C (2004) Post-transcriptional and nongenomic effects of glucocorticoids. Proc Am Thorac Soc 1: 255–263

    Article  PubMed  CAS  Google Scholar 

  208. Vedeckis WV, Ali M, Allen HR (1989) Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res 49: 2295s–2302s

    PubMed  CAS  Google Scholar 

  209. Caldenhoven E, Lidén J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9: 401–412

    Article  PubMed  CAS  Google Scholar 

  210. Wissink S, van Heerde EC, Schmitz ML et al (1997) Distinct domains of the RelA NF-kappaB subunit are required for negative cross-talk and direct interaction with the glucocorticoid receptor. J Biol Chem 272: 22278–22284

    Article  PubMed  CAS  Google Scholar 

  211. Lidén J, Delaunay F, Rafter I et al (1997) A new function for the C-terminal zinc finger of the glucocorticoid receptor. Repression of RelA transactivation. J Biol Chem 272: 21467–21472

    Article  PubMed  Google Scholar 

  212. Adcock IM, Newton R, Barnes PJ (1997) NF-kappa B involvement in IL-1 beta-induction of GM-CSF and COX-2: inhibition by glucocorticoids does not require I-kappa B. Biochem Soc Trans 25: 154S

    PubMed  CAS  Google Scholar 

  213. Islam KN, Mendelson CR (2008) Glucocorticoid/glucocorticoid receptor inhibition of ­surfactant protein-A (SP-A) gene expression in lung type II cells is mediated by repressive changes in histone modification at the SP-A promoter. Mol Endocrinol 22: 585–596

    Article  PubMed  CAS  Google Scholar 

  214. Kassel O, Schneider S, Heilbock C et al (2004) A nuclear isoform of the focal adhesion LIM-domain protein Trip6 integrates activating and repressing signals at AP-1- and NF-kappaB-regulated promoters. Genes Dev 18: 2518–2528

    Article  PubMed  CAS  Google Scholar 

  215. McKay LI, Cidlowski JA (1998) Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 12: 45–56

    Article  PubMed  CAS  Google Scholar 

  216. De Bosscher K, Vanden Berghe W, Vermeulen L et al (2000) Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, ­irrespective of coactivator levels in the cell. Proc Natl Acad Sci USA 97: 3919–3924

    Article  PubMed  Google Scholar 

  217. Zhong H, May MJ, Jimi E, Ghosh S (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9: 625–636

    Article  PubMed  CAS  Google Scholar 

  218. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1: 661–671

    Article  PubMed  CAS  Google Scholar 

  219. Holaska JM, Black BE, Rastinejad F, Paschal BM (2002) Ca2+-dependent nuclear export mediated by calreticulin. Mol Cell Biol 22: 6286–6297

    Article  PubMed  CAS  Google Scholar 

  220. Freedman ND, Yamamoto KR (2004) Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell 15: 2276–2286

    Article  PubMed  CAS  Google Scholar 

  221. Tao T, Lan J, Lukacs GL et al (2006) Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 35: 668–680

    Article  PubMed  CAS  Google Scholar 

  222. Caelles C, González-Sancho JM, Muñoz A (1997) Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev 11: 3351–3364

    Article  PubMed  CAS  Google Scholar 

  223. Ventura JJ, Roncero C, Fabregat I, Benito M (1999) Glucocorticoid receptor down-regulates c-Jun amino terminal kinases induced by tumor necrosis factor alpha in fetal rat hepatocyte primary cultures. Hepatology 29: 849–857

    Article  PubMed  CAS  Google Scholar 

  224. Bruna A, Nicolas M, Muñoz A, Kyriakis JM, Caelles C (2003) Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids. EMBO J 22: 6035–6044

    Article  PubMed  CAS  Google Scholar 

  225. González MV, Jiménez B, Berciano MT et al (2000) Glucocorticoids antagonize AP-1 by inhibiting the activation/phosphorylation of JNK without affecting its subcellular distribution. J Cell Biol 150: 1199–1208

    Article  PubMed  Google Scholar 

  226. Hirasawa N, Izumi S, Linwong W, Ohuchi K (2003) Inhibition by dexamethasone of interleukin 13 production via glucocorticoid receptor-mediated inhibition of c-Jun phosphorylation. FEBS Lett 554: 489–493

    Article  PubMed  CAS  Google Scholar 

  227. Arthur JS (2008) MSK activation and physiological roles. Front Biosci 13: 5866–5879

    Article  PubMed  CAS  Google Scholar 

  228. Darragh J, Soloaga A, Beardmore VA et al (2005) MSKs are required for the transcription of the nuclear orphan receptors Nur77, Nurr1 and Nor1 downstream of MAPK signalling. Biochem J 390: 749–759

    Article  PubMed  CAS  Google Scholar 

  229. Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17: 4426–4441

    Article  PubMed  CAS  Google Scholar 

  230. Wiggin GR, Soloaga A, Foster JM et al (2002) MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 22: 2871–2881

    Article  PubMed  CAS  Google Scholar 

  231. Beardmore VA, Hinton HJ, Eftychi C et al (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25: 10454–10464

    Article  PubMed  CAS  Google Scholar 

  232. Dunn KL, Davie JR (2005) Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene 24: 3492–3502

    Article  PubMed  CAS  Google Scholar 

  233. Macdonald N, Welburn JP, Noble ME et al (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20: 199–211

    Article  PubMed  CAS  Google Scholar 

  234. Winter S, Simboeck E, Fischle W et al (2008) 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27: 88–99

    Article  PubMed  CAS  Google Scholar 

  235. Winter S, Fischle W, Seiser C (2008) Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 7: 1336–1342

    Article  PubMed  CAS  Google Scholar 

  236. Vicent GP, Ballaré C, Nacht AS et al (2006) Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24: 367–381

    Article  PubMed  CAS  Google Scholar 

  237. Beck IM, Berghe WV, Gerlo S et al (2009) Glucocorticoids and mitogen- and stress-activated protein kinase 1 inhibitors: possible partners in the combat against inflammation. Biochem Pharmacol 77: 1194–1205

    Article  PubMed  CAS  Google Scholar 

  238. Beck IM, Vanden Berghe W, Vermeulen L et al (2008) Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-kappaB inhibition. EMBO J 27: 1682–1693

    Article  PubMed  CAS  Google Scholar 

  239. Sakurai H, Chiba H, Miyoshi H et al (1999) IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274: 30353–30356

    Article  PubMed  CAS  Google Scholar 

  240. Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) Phosphorylation of RelA/p65 on serine 536 defines an IkBa-independent NF-kB pathway. J Biol Chem 280: 34538–34547

    Article  PubMed  CAS  Google Scholar 

  241. Buss H, Dorrie A, Schmitz ML et al (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-kB at serine 536 is mediated by multiple protein kinases including IkB kinase (IKK)-α, IKKβ, IKKε, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated ­factor II31-mediated interleukin-8 transcription. J Biol Chem 279: 55633–55643

    Article  PubMed  CAS  Google Scholar 

  242. Bohuslav J, Chen LF, Kwon H et al (2004) p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem 279: 26115–26125

    Article  PubMed  CAS  Google Scholar 

  243. Gloire G, Horion J, El Mjiyad N et al (2007) Promoter-dependent effect of IKKalpha on NF-kappaB/p65 DNA binding. J Biol Chem 282: 21308–21318

    Article  PubMed  CAS  Google Scholar 

  244. Tai DJ, Su CC, Ma YL, Lee EH (2009) SGK1 phosphorylation of IkappaB Kinase alpha and p300 up-regulates NF-kappaB activity and increases N-methyl-D-aspartate receptor NR2A and NR2B expression. J Biol Chem 284: 4073–4089

    Article  PubMed  CAS  Google Scholar 

  245. Wu W, Zou M, Brickley DR et al (2006) Glucocorticoid receptor activation signals through forkhead transcription factor 3a in breast cancer cells. Mol Endocrinol 20: 2304–2314

    Article  PubMed  CAS  Google Scholar 

  246. Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP (2002) Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5′-flanking region. Am J Physiol Endocrinol Metab 283: E971–979

    PubMed  CAS  Google Scholar 

  247. Mikosz CA, Brickley DR, Sharkey MS et al (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276: 16649–16654

    Article  PubMed  CAS  Google Scholar 

  248. Leroy V, De Seigneux S, Agassiz V et al (2009) Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol 20: 131–144

    Article  PubMed  CAS  Google Scholar 

  249. Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20: 2629–2634

    Article  PubMed  CAS  Google Scholar 

  250. Barboric M, Nissen RM, Kanazawa S et al (2001) NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 8: 327–337

    Article  PubMed  CAS  Google Scholar 

  251. Nowak DE, Tian B, Jamaluddin M et al (2008) RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol 28: 3623–3638

    Article  PubMed  CAS  Google Scholar 

  252. Ogawa S, Lozach J, Benner C et al (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122: 707–721

    Article  PubMed  CAS  Google Scholar 

  253. McWhirter SM, Fitzgerald KA, Rosains J et al (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101: 233–238

    Article  PubMed  CAS  Google Scholar 

  254. Hemmi H, Takeuchi O, Sato S et al (2004) The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199: 1641–1650

    Article  PubMed  CAS  Google Scholar 

  255. McCoy CE, Carpenter S, Palsson-McDermott EM et al (2008) Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and -4 by targeting TBK1 activation. J Biol Chem 283: 14277–14285

    Article  PubMed  CAS  Google Scholar 

  256. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6: 644–658

    Article  PubMed  CAS  Google Scholar 

  257. Servant MJ, Grandvaux N, tenOever BR et al (2003) Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278: 9441–9447

    Article  PubMed  CAS  Google Scholar 

  258. Ito K, Barnes PJ, Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20: 6891–6903

    Article  PubMed  CAS  Google Scholar 

  259. Ito K, Lim S, Caramori G et al (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15: 1110–1112

    PubMed  CAS  Google Scholar 

  260. Tsaprouni LG, Ito K, Adcock IM, Punchard N (2007) Suppression of lipopolysaccharide- and tumour necrosis factor-alpha-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin Exp Immunol 150: 151–157

    Article  PubMed  CAS  Google Scholar 

  261. De Bosscher K, Vanden Berghe W, Haegeman G (2001) Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol Endocrinol 15: 219–227

    Article  PubMed  Google Scholar 

  262. McKay LI, Cidlowski JA (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 14: 1222–1234

    Article  PubMed  CAS  Google Scholar 

  263. Wu J, Li Y, Dietz J, Lala DS (2004) Repression of p65 transcriptional activation by the ­glucocorticoid receptor in the absence of receptor-coactivator interactions. Mol Endocrinol 18: 53–62

    Article  PubMed  CAS  Google Scholar 

  264. Sun Y, Tao YG, Kagan BL et al (2008) Modulation of transcription parameters in glucocorticoid receptor-mediated repression. Mol Cell Endocrinol 295: 59–69

    Article  PubMed  CAS  Google Scholar 

  265. Michalik L, Auwerx J, Berger JP et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58: 726–741.

    Article  PubMed  CAS  Google Scholar 

  266. Michalik L, Wahli W (2008) PPARs mediate lipid signaling in inflammation and cancer. PPAR Res 2008: 134059

    Article  PubMed  CAS  Google Scholar 

  267. Wahli W (2008) A gut feeling of the PXR, PPAR and NF-kappaB connection. J Intern Med 263: 613–619

    Article  PubMed  CAS  Google Scholar 

  268. Kono K, Kamijo Y, Hora K et al (2009) PPAR{alpha} attenuates the proinflammatory response in activated mesangial cells. Am J Physiol Renal Physiol 296: F328–336

    Article  PubMed  CAS  Google Scholar 

  269. Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116: 571–580

    Article  PubMed  CAS  Google Scholar 

  270. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49: 497–505

    Article  PubMed  CAS  Google Scholar 

  271. Shiri-Sverdlov R, Wouters K, van Gorp PJ et al (2006) Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. J Hepatol 44: 732–741

    Article  PubMed  CAS  Google Scholar 

  272. Staels B, Koenig W, Habib A et al (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393: 79–793

    Article  PubMed  CAS  Google Scholar 

  273. Neve BP, Fruchart JC, Staels B (2000) Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 60: 1245–1250

    Article  PubMed  CAS  Google Scholar 

  274. Eun CS, Han DS, Lee SH et al (2006) Attenuation of colonic inflammation by PPARgamma in intestinal epithelial cells: effect on Toll-like receptor pathway. Dig Dis Sci 51: 693–697

    Article  PubMed  CAS  Google Scholar 

  275. Rodriguez-Calvo R, Serrano L, Coll T et al (2008) Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2. Diabetes 57: 2149–2157

    Article  PubMed  CAS  Google Scholar 

  276. Han S, Ritzenthaler JD, Zheng Y, Roman J (2008) PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals. Am J Physiol Lung Cell Mol Physiol 294: L1238–1249

    Article  PubMed  CAS  Google Scholar 

  277. Bren-Mattison Y, Meyer AM, Van Putten V et al (2008) Antitumorigenic effects of peroxisome proliferator-activated receptor-gamma in non-small-cell lung cancer cells are mediated by suppression of cyclooxygenase-2 via inhibition of nuclear factor-kappaB. Mol Pharmacol 73: 709–717

    Article  PubMed  CAS  Google Scholar 

  278. Chinetti G, Griglio S, Antonucci M et al (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273: 25573–25580

    Article  PubMed  CAS  Google Scholar 

  279. Delerive P, De Bosscher K, Vanden Berghe W et al (2002) DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha. Mol Endocrinol 16: 1029–1039

    Article  PubMed  CAS  Google Scholar 

  280. Delerive P, Gervois P, Fruchart JC, Staels B (2000) Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 275: 36703–36707

    Article  PubMed  CAS  Google Scholar 

  281. Okayasu T, Tomizawa A, Suzuki K et al (2008) PPARalpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation. Life Sci 82: 884–891

    Article  PubMed  CAS  Google Scholar 

  282. Han S, Ritzenthaler JD, Sun X et al (2009) Activation of peroxisome proliferator-activated receptor beta/delta induces lung cancer growth via peroxisome proliferator-activated receptor coactivator gamma-1alpha. Am J Respir Cell Mol Biol 40: 325–331

    Article  PubMed  CAS  Google Scholar 

  283. Kelly D, Campbell JI, King TP et al (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5: 104–112

    Article  PubMed  CAS  Google Scholar 

  284. Rossi A, Kapahi P, Natoli G et al (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403: 103–108

    Article  PubMed  CAS  Google Scholar 

  285. Straus DS, Pascual G, Li M et al (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA 97: 4844–4849

    Article  PubMed  CAS  Google Scholar 

  286. Jung WK, Park IS, Park SJ et al (2009) The 15-deoxy-Delta12,14-prostaglandin J2 inhibits LPS-stimulated AKT and NF-kappaB activation and suppresses interleukin-6 in osteoblast-like cells MC3T3E-1. Life Sci 85: 46–53

    Article  PubMed  CAS  Google Scholar 

  287. Lee DR, Kwon CH, Park JY et al (2009) 15-Deoxy-Delta(12,14)-prostaglandin J(2) induces mitochondrial-dependent apoptosis through inhibition of PKA/NF-kappaB in renal proximal epithelial cells. Toxicology 258: 17–24

    Article  PubMed  CAS  Google Scholar 

  288. Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in ­macrophages. Immunology 125: 344–358

    Article  PubMed  CAS  Google Scholar 

  289. Mauro C, Pacifico F, Lavorgna A et al (2006) ABIN-1 binds to NEMO/IKKgamma and ­co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 281: 18482–18488

    Article  PubMed  CAS  Google Scholar 

  290. Ramsey HE, Da Silva CG, Longo CR et al (2009) A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-alpha expression. Liver Transpl 15: 1613–1621

    Article  PubMed  Google Scholar 

  291. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58: 621–681

    Article  PubMed  CAS  Google Scholar 

  292. Bougarne N, Paumelle R, Caron S et al (2009) PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci USA 106: 7397–7402

    Article  PubMed  Google Scholar 

  293. Genovese T, Esposito E, Mazzon E et al (2009) PPAR-alpha modulate the anti-inflammatory effect of glucocorticoids in the secondary damage in experimental spinal cord trauma. Pharmacol Res 59: 338–350

    Article  PubMed  CAS  Google Scholar 

  294. Cuzzocrea S, Bruscoli S, Mazzon E et al (2008) Peroxisome proliferator-activated receptor-alpha contributes to the anti-inflammatory activity of glucocorticoids. Mol Pharmacol 73: 323–337

    Article  PubMed  CAS  Google Scholar 

  295. Riccardi L, Mazzon E, Bruscoli S et al (2009) Peroxisome proliferator-activated receptor-alpha modulates the anti-inflammatory effect of glucocorticoids in a model of inflammatory bowel disease in mice. Shock 31: 308–316

    Article  PubMed  CAS  Google Scholar 

  296. Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2 Suppl 1: 227–237

    Article  PubMed  CAS  Google Scholar 

  297. Burrage PS, Schmucker AC, Ren Y et al (2008) Retinoid X receptor and peroxisome proliferator-activated receptor-gamma agonists cooperate to inhibit matrix metalloproteinase gene expression. Arthritis Res Ther 10: R139

    Article  PubMed  CAS  Google Scholar 

  298. Ghisletti S, Huang W, Ogawa S et al (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25: 57–70

    Article  PubMed  CAS  Google Scholar 

  299. Korf H, Vander Beken S, Romano M et al (2009) Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest 119: 1626–1637

    Article  PubMed  CAS  Google Scholar 

  300. Levin N, Bischoff ED, Daige CL et al (2005) Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 25: 135–142

    Article  PubMed  CAS  Google Scholar 

  301. Vedin LL, Lewandowski SA, Parini P et al (2009) The oxysterol receptor LXR inhibits ­proliferation of human breast cancer cells. Carcinogenesis 30: 575–579

    Article  PubMed  CAS  Google Scholar 

  302. Castrillo A, Joseph SB, Marathe C et al (2003) Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 278: 10443–10449

    Article  PubMed  CAS  Google Scholar 

  303. Joseph SB, Castrillo A, Laffitte BA et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9: 213–219

    Article  PubMed  CAS  Google Scholar 

  304. Joseph SB, Tontonoz P (2003) LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol 3: 192–197

    Article  PubMed  CAS  Google Scholar 

  305. Wang YY, Dahle MK, Steffensen KR et al (2009) Liver X receptor agonist GW3965 dose-dependently regulates lps-mediated liver injury and modulates posttranscriptional TNF-alpha production and p38 mitogen-activated protein kinase activation in liver macrophages. Shock 32: 548–553

    Article  PubMed  CAS  Google Scholar 

  306. Wu S, Yin R, Ernest R et al (2009) Liver X receptors are negative regulators of cardiac hypertrophy via suppressing NF-kappaB signalling. Cardiovasc Res 84: 119–126

    Article  PubMed  CAS  Google Scholar 

  307. Chang L, Zhang Z, Li W et al (2007) Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS-NF-kappaB pathway. Biochem Biophys Res Commun 357: 772–778

    Article  PubMed  CAS  Google Scholar 

  308. Yasuda T, Kanno M, Kawamoto M et al (2005) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 22(R)-hydroxycholesterol requires de novo protein synthesis in activated macrophages. J Steroid Biochem Mol Biol 97: 376–383

    Article  PubMed  CAS  Google Scholar 

  309. Blaschke F, Takata Y, Caglayan E et al (2006) A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circ Res 99: e88–99

    Article  PubMed  CAS  Google Scholar 

  310. Piraino G, Cook JA, O’Connor M et al (2006) Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages. Shock 26: 146–153

    Article  PubMed  CAS  Google Scholar 

  311. Colin S, Bourguignon E, Boullay AB et al (2008) Intestine-specific regulation of PPARalpha gene transcription by liver X receptors. Endocrinology 149: 5128–5135

    Article  PubMed  CAS  Google Scholar 

  312. Nilsson S, Makela S, Treuter E et al (2001) Mechanisms of estrogen action. Physiol Rev 81: 1535–1565

    PubMed  CAS  Google Scholar 

  313. Björnström L, Sjöberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19: 833–842

    Article  PubMed  CAS  Google Scholar 

  314. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12: 1001s–1007s

    Article  PubMed  CAS  Google Scholar 

  315. Manavathi B, Kumar R (2006) Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin. J Cell Physiol 207: 594–604

    Article  PubMed  CAS  Google Scholar 

  316. Jordan VC (2004) Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5: 207–213

    Article  PubMed  CAS  Google Scholar 

  317. Jordan VC (2002) The secrets of selective estrogen receptor modulation: cell-specific coregulation. Cancer Cell 1: 215–217

    Article  PubMed  CAS  Google Scholar 

  318. Pearce ST, Liu H, Jordan VC (2003) Modulation of estrogen receptor alpha function and stability by tamoxifen and a critical amino acid (Asp-538) in helix 12. J Biol Chem 278: 7630–7638.

    Article  PubMed  CAS  Google Scholar 

  319. McDonnell DP, Norris JD (2002) Connections and regulation of the human estrogen receptor. Science 296: 1642–1644

    Article  PubMed  CAS  Google Scholar 

  320. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112

    Article  PubMed  Google Scholar 

  321. Pratt MA, Bishop TE, White D et al (2003) Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol 23: 6887–6900

    Article  PubMed  CAS  Google Scholar 

  322. Lu T, Sathe SS, Swiatkowski SM et al (2004) Secretion of cytokines and growth factors as a general cause of constitutive NFkappaB activation in cancer. Oncogene 23: 2138–2145

    Article  PubMed  CAS  Google Scholar 

  323. Biswas DK, Shi Q, Baily S et al (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101: 10137–10142

    Article  PubMed  CAS  Google Scholar 

  324. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  325. Ammann P, Rizzoli R, Bonjour JP et al (1997) Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 99: 1699–1703

    Article  PubMed  CAS  Google Scholar 

  326. Cacquevel M, Lebeurrier N, Cheenne S, Vivien D (2004) Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets 5: 529–534

    Article  PubMed  CAS  Google Scholar 

  327. Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269: 12940–12946

    PubMed  CAS  Google Scholar 

  328. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756

    Article  PubMed  CAS  Google Scholar 

  329. Quaedackers ME, van den Brink CE, van der Saag PT, Tertoolen LG (2007) Direct interaction between estrogen receptor alpha and NF-kappaB in the nucleus of living cells. Mol Cell Endocrinol 273: 42–50

    Article  PubMed  CAS  Google Scholar 

  330. Shih HC, Lin CL, Lee TY et al (2006) 17beta-Estradiol inhibits subarachnoid hemorrhage-induced inducible nitric oxide synthase gene expression by interfering with the nuclear factor kappa B transactivation. Stroke 37: 3025–3031

    Article  PubMed  CAS  Google Scholar 

  331. Hirano S, Furutama D, Hanafusa T (2007) Physiologically high concentrations of 17beta-estradiol enhance NF-kappaB activity in human T cells. Am J Physiol Regul Integr Comp Physiol 292: R1465–1471

    Article  PubMed  CAS  Google Scholar 

  332. Suzuki T, Shimizu T, Yu HP et al (2007) Estrogen receptor-alpha predominantly mediates the salutary effects of 17beta-estradiol on splenic macrophages following trauma-hemorrhage. Am J Physiol Cell Physiol 293: C978–984

    Article  PubMed  CAS  Google Scholar 

  333. Suzuki T, Shimizu T, Yu HP et al (2007) Salutary effects of 17beta-estradiol on T-cell signaling and cytokine production after trauma-hemorrhage are mediated primarily via estrogen receptor-alpha. Am J Physiol Cell Physiol 292: C2103–2111

    Article  PubMed  CAS  Google Scholar 

  334. Xiu-li W, Wen-jun C, Hui-hua D et al (2009) ERB-041, a selective ER beta agonist, inhibits iNOS production in LPS-activated peritoneal macrophages of endometriosis via suppression of NF-kappaB activation. Mol Immunol 46: 2413–2418

    Article  PubMed  CAS  Google Scholar 

  335. Dai R, Phillips RA, Ahmed SA (2007) Despite inhibition of nuclear localization of NF-kappa B p65, c-Rel, and RelB, 17-beta estradiol up-regulates NF-kappa B signaling in mouse splenocytes: the potential role of Bcl-3. J Immunol 179: 1776–1783

    PubMed  CAS  Google Scholar 

  336. Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15: 4971–4979

    PubMed  CAS  Google Scholar 

  337. Galien R, Garcia T (1997) Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res 25: 2424–2429

    Article  PubMed  CAS  Google Scholar 

  338. An J, Ribeiro RC, Webb P et al (1999) Estradiol repression of tumor necrosis factor-alpha transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc Natl Acad Sci USA 96: 15161–15166

    Article  PubMed  CAS  Google Scholar 

  339. Paimela T, Ryhänen T, Mannermaa E et al (2007) The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett 110: 139–144

    Article  PubMed  CAS  Google Scholar 

  340. Li J, Wu M, Que L et al (2008) 17beta-estradiol attenuates cardiac dysfunction and decreases NF-kappaB binding activity in mechanically stretched rat hearts. Steroids 73: 720–726

    Article  PubMed  CAS  Google Scholar 

  341. Heck S, Bender K, Kullmann M et al (1997) I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. EMBO J 16: 4698–4707

    Article  PubMed  CAS  Google Scholar 

  342. Nettles KW, Gil G, Nowak J et al (2008) CBP is a dosage-dependent regulator of nuclear factor-kappaB suppression by the estrogen receptor. Mol Endocrinol 22: 263–272

    Article  PubMed  CAS  Google Scholar 

  343. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16: 46–52

    Article  PubMed  CAS  Google Scholar 

  344. Biswas DK, Singh S, Shi Q et al (2005) Crossroads of estrogen receptor and NF-kappaB signaling. Sci STKE 2005: pe27

    PubMed  Google Scholar 

  345. Crisafulli C, Bruscoli S, Esposito E et al (2009) PPAR-{alpha} contributes to the anti-inflammatory activity of 17{beta}-estradiol. J Pharmacol Exp Ther 331: 796–807

    Google Scholar 

  346. Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3: 27–41

    Article  PubMed  CAS  Google Scholar 

  347. Hsieh YC, Frink M, Thobe BM et al (2007) 17Beta-estradiol downregulates Kupffer cell TLR4-dependent p38 MAPK pathway and normalizes inflammatory cytokine production following trauma-hemorrhage. Mol Immunol 44: 2165–2172

    Article  PubMed  CAS  Google Scholar 

  348. Borras C, Gambini J, Gomez-Cabrera MC et al (2005) 17beta-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell 4: 113–118

    Article  PubMed  CAS  Google Scholar 

  349. Vina J, Borras C, Gambini J et al (2005) Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 579: 2541–2545

    Article  PubMed  CAS  Google Scholar 

  350. Qiu J, Wang X, Guo X et al (2009) Toll-like receptor 9 agonist inhibits ERalpha-mediated transactivation by activating NF-kappaB in breast cancer cell lines. Oncol Rep 22: 935–941

    Article  PubMed  CAS  Google Scholar 

  351. Guzeloglu-Kayisli O, Halis G, Taskiran S et al (2008) DNA-binding ability of NF-kappaB is affected differently by ERalpha and ERbeta and its activation results in inhibition of estrogen responsiveness. Reprod Sci 15: 493–505

    Article  PubMed  CAS  Google Scholar 

  352. Chu S, Nishi Y, Yanase T et al (2004) Transrepression of estrogen receptor beta signaling by nuclear factor-kappab in ovarian granulosa cells. Mol Endocrinol 18: 1919–1928

    Article  PubMed  CAS  Google Scholar 

  353. Wissink S, van der Burg B, Katzenellenbogen BS, van der Saag PT (2001) Synergistic activation of the serotonin-1A receptor by nuclear factor-kappa B and estrogen. Mol Endocrinol 15: 543–552

    Article  PubMed  CAS  Google Scholar 

  354. Vanden Berghe W, Dijsselbloem N, Vermeulen L et al (2006) Attenuation of mitogen- and stress-activated protein kinase-1-driven nuclear factor-kappaB gene expression by soy isoflavones does not require estrogenic activity. Cancer Res 66: 4852–4862

    Article  PubMed  CAS  Google Scholar 

  355. Maret A, Clamens S, Delrieu I et al (1999) Expression of the interleukin-6 gene is constitutive and not regulated by estrogen in rat vascular smooth muscle cells in culture. Endocrinology 140: 2876–2882

    Article  PubMed  CAS  Google Scholar 

  356. Dai R, Phillips RA, Karpuzoglu E et al (2009) Estrogen regulates transcription factors STAT-1 and NF-{kappa}B to promote inducible nitric oxide synthase and inflammatory responses. J Immunol 183: 6998–7005

    Article  PubMed  CAS  Google Scholar 

  357. Cerillo G, Rees A, Manchanda N et al (1998) The oestrogen receptor regulates NFkappaB and AP-1 activity in a cell-specific manner. J Steroid Biochem Mol Biol 67: 79–88

    Article  PubMed  CAS  Google Scholar 

  358. Van Laere SJ, Van der Auwera I, Van den Eynden GG et al (2007) NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer 97: 659–669

    Article  PubMed  CAS  Google Scholar 

  359. Mahmoodzadeh S, Fritschka S, Dworatzek E et al (2009) Nuclear factor-kappaB regulates estrogen receptor-alpha transcription in the human heart. J Biol Chem 284: 24705–24714

    Article  PubMed  CAS  Google Scholar 

  360. Katzenellenbogen BS, Katzenellenbogen JA (2002) Biomedicine. Defining the “S” in SERMs. Science 295: 2380–2381

    Article  PubMed  CAS  Google Scholar 

  361. Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2465–2468

    Article  PubMed  CAS  Google Scholar 

  362. Wu RC, Feng Q, Lonard DM, O’Malley BW (2007) SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129: 1125–1140

    Article  PubMed  CAS  Google Scholar 

  363. Amazit L, Pasini L, Szafran AT et al (2007) Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 27: 6913–6932

    Article  PubMed  CAS  Google Scholar 

  364. Lu NZ, Wardell SE, Burnstein KL et al (2006) International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58: 782–797

    Article  PubMed  CAS  Google Scholar 

  365. Palvimo JJ, Reinikainen P, Ikonen T et al (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271: 24151–24156

    Article  PubMed  CAS  Google Scholar 

  366. Norata GD, Tibolla G, Seccomandi PM et al (2006) Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 91: 546–554

    Article  PubMed  CAS  Google Scholar 

  367. Keller ET, Chang C, Ershler WB (1996) Inhibition of NFkappaB activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271: 26267–26275

    Article  PubMed  CAS  Google Scholar 

  368. Aarnisalo P, Palvimo JJ, Janne OA (1998) CREB-binding protein in androgen receptor-­mediated signaling. Proc Natl Acad Sci USA 95: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  369. Shimizu T, Yu HP, Hsieh YC et al (2007) Flutamide attenuates pro-inflammatory cytokine production and hepatic injury following trauma-hemorrhage via estrogen receptor-related pathway. Ann Surg 245: 297–304

    Article  PubMed  Google Scholar 

  370. Gonzales RJ, Duckles SP, Krause DN (2009) Dihydrotestosterone stimulates cerebrovascular inflammation through NFkappaB, modulating contractile function. J Cereb Blood Flow Metab 29: 244–253

    Article  PubMed  CAS  Google Scholar 

  371. Supakar PC, Jung MH, Song CS et al (1995) Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver. J Biol Chem 270: 837–842

    Article  PubMed  CAS  Google Scholar 

  372. Nakajima Y, DelliPizzi AM, Mallouh C, Ferreri NR (1996) TNF-mediated cytotoxicity and resistance in human prostate cancer cell lines. Prostate 29: 296–302

    Article  PubMed  CAS  Google Scholar 

  373. Zhang L, Altuwaijri S, Deng F et al (2009) NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175: 489–499

    Article  PubMed  CAS  Google Scholar 

  374. Ko S, Shi L, Kim S et al (2008) Interplay of nuclear factor-kappaB and B-myb in the negative regulation of androgen receptor expression by tumor necrosis factor alpha. Mol Endocrinol 22: 273–286

    Article  PubMed  CAS  Google Scholar 

  375. Bellido T, Jilka RL, Boyce BF et al (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 95: 2886–2895

    Article  PubMed  CAS  Google Scholar 

  376. Callewaert F, Boonen S, Vanderschueren D (2010) Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol Metab 21: 89–95

    Google Scholar 

  377. Chen Q, Kaji H, Kanatani M et al (2004) Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm Metab Res 36: 674–678

    Article  PubMed  CAS  Google Scholar 

  378. Imai Y, Kondoh S, Kouzmenko A, Kato S (2010) Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-{alpha}. Mol Endocrinol 24: 877–885

    Google Scholar 

  379. Suh J, Payvandi F, Edelstein LC et al (2002) Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate 52: 183–200

    Article  PubMed  CAS  Google Scholar 

  380. Papadopoulou N, Charalampopoulos I, Anagnostopoulou V et al (2008) Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells. Mol Cancer 7: 88

    Article  PubMed  Google Scholar 

  381. Nelius T, Filleur S, Yemelyanov A et al (2007) Androgen receptor targets NFkappaB and TSP1 to suppress prostate tumor growth in vivo. Int J Cancer 121: 999–1008

    Article  PubMed  CAS  Google Scholar 

  382. Kalkhoven E, Wissink S, van der Saag PT, van der Burg B (1996) Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem 271: 6217–6224

    Article  PubMed  CAS  Google Scholar 

  383. Condon JC, Hardy DB, Kovaric K, Mendelson CR (2006) Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol 20: 764–775

    Article  PubMed  CAS  Google Scholar 

  384. Condon JC, Jeyasuria P, Faust JM et al (2003) A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci USA 100: 9518–9523

    Article  PubMed  CAS  Google Scholar 

  385. Mendelson CR, Condon JC (2005) New insights into the molecular endocrinology of parturition. J Steroid Biochem Mol Biol 93: 113–119

    Article  PubMed  CAS  Google Scholar 

  386. Christiaens I, Zaragoza DB, Guilbert L et al (2008) Inflammatory processes in preterm and term parturition. J Reprod Immunol 79: 50–57

    Article  PubMed  CAS  Google Scholar 

  387. Srivastava MD, Anderson DJ (2007) Progesterone receptor expression by human leukocyte cell lines: molecular mechanisms of cytokine suppression. Clin Exp Obstet Gynecol 34: 14–24

    PubMed  CAS  Google Scholar 

  388. Mendelson CR, Hardy DB (2006) Role of the progesterone receptor (PR) in the regulation of inflammatory response pathways and aromatase in the breast. J Steroid Biochem Mol Biol 102: 241–249

    Article  PubMed  CAS  Google Scholar 

  389. Germain P, Chambon P, Eichele G et al (2006) International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58: 760–772

    Article  PubMed  CAS  Google Scholar 

  390. Germain P, Chambon P, Eichele G et al (2006) International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58: 712–725

    Article  PubMed  CAS  Google Scholar 

  391. Motomura K, Ohata M, Satre M, Tsukamoto H (2001) Destabilization of TNF-alpha mRNA by retinoic acid in hepatic macrophages: implications for alcoholic liver disease. Am J Physiol Endocrinol Metab 281: E420–429

    PubMed  CAS  Google Scholar 

  392. Delerive P, Monte D, Dubois G et al (2001) The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep 2: 42–48

    Article  PubMed  CAS  Google Scholar 

  393. Witcher M, Pettersson F, Dupere-Richer D et al (2008) Retinoic acid modulates chromatin to potentiate tumor necrosis factor alpha signaling on the DIF2 promoter. Nucleic Acids Res 36: 435–443

    Article  PubMed  CAS  Google Scholar 

  394. Takenouchi-Ohkubo N, Asano M, Chihaya H et al (2004) Retinoic acid enhances the gene expression of human polymeric immunoglobulin receptor (pIgR) by TNF-alpha. Clin Exp Immunol 135: 448–454

    Article  PubMed  CAS  Google Scholar 

  395. Kwakkel J, Wiersinga WM, Boelen A (2007) Interleukin-1beta modulates endogenous ­thyroid hormone receptor alpha gene transcription in liver cells. J Endocrinol 194: 257–265

    Article  PubMed  CAS  Google Scholar 

  396. Kwakkel J, Wiersinga WM, Boelen A (2006) Differential involvement of nuclear factor-kappaB and activator protein-1 pathways in the interleukin-1beta-mediated decrease of deiodinase type 1 and thyroid hormone receptor beta1 mRNA. J Endocrinol 189: 37–44

    Article  PubMed  CAS  Google Scholar 

  397. Antunes TT, Gagnon A, Langille ML, Sorisky A (2008) Thyroid-stimulating hormone induces interleukin-6 release from human adipocytes through activation of the nuclear ­factor-kappaB pathway. Endocrinology 149: 3062–3066

    Article  PubMed  CAS  Google Scholar 

  398. Moore DD, Kato S, Xie W et al (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev 58: 742–759

    Article  PubMed  CAS  Google Scholar 

  399. Griffin MD, Dong X, Kumar R (2007) Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Arch Biochem Biophys 460: 218–226

    Article  PubMed  CAS  Google Scholar 

  400. Dong X, Lutz W, Schroeder TM et al (2005) Regulation of relB in dendritic cells by means of modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. Proc Natl Acad Sci USA 102: 16007–16012

    Article  PubMed  CAS  Google Scholar 

  401. D’Ambrosio D, Cippitelli M, Cocciolo MG et al (1998) Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 101: 252–262

    Article  PubMed  Google Scholar 

  402. Yu XP, Bellido T, Manolagas SC (1995) Down-regulation of NF-kappa B protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 92: 10990–10994

    Article  PubMed  CAS  Google Scholar 

  403. Keisala T, Minasyan A, Lou YR et al (2009) Premature aging in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 115: 91–97

    Article  PubMed  CAS  Google Scholar 

  404. Janjetovic Z, Zmijewski MA, Tuckey RC et al (2009) 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes. PLoS One 4: e5988

    Article  PubMed  CAS  Google Scholar 

  405. Stio M, Martinesi M, Bruni S et al (2007) The Vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn’s ­disease. J Steroid Biochem Mol Biol 103: 51–60

    Article  PubMed  CAS  Google Scholar 

  406. Tan X, Wen X, Liu Y (2008) Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol 19: 1741–1752

    Article  PubMed  CAS  Google Scholar 

  407. Sun J, Mustafi R, Cerda S et al (2008) Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol 111: 37–40

    Article  PubMed  CAS  Google Scholar 

  408. Farmer PK, He X, Schmitz ML et al (2000) Inhibitory effect of NF-kappaB on 1,25-dihydroxyvitamin D(3) and retinoid X receptor function. Am J Physiol Endocrinol Metab 279: E213–220

    PubMed  CAS  Google Scholar 

  409. Lu X, Farmer P, Rubin J, Nanes MS (2004) Integration of the NfkappaB p65 subunit into the vitamin D receptor transcriptional complex: identification of p65 domains that inhibit 1,25-dihydroxyvitamin D3-stimulated transcription. J Cell Biochem 92: 833–848

    Article  PubMed  CAS  Google Scholar 

  410. Wang YD, Chen WD, Wang M et al (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48: 1632–1643

    Article  PubMed  CAS  Google Scholar 

  411. Li YT, Swales KE, Thomas GJ et al (2007) Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler Thromb Vasc Biol 27: 2606–2611

    Article  PubMed  CAS  Google Scholar 

  412. Axon A, Cowie DE, Mann DA, Wright MC (2008) A mechanism for the anti-fibrogenic effects of the pregnane X receptor (PXR) in the liver: inhibition of NF-kappaB? Toxicology 246: 40–44

    Article  PubMed  CAS  Google Scholar 

  413. Shah YM, Ma X, Morimura K et al (2007) Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol 292: G1114–1122

    Article  PubMed  CAS  Google Scholar 

  414. Gu X, Ke S, Liu D et al (2006) Role of NF-kappaB in regulation of PXR-mediated gene expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents. J Biol Chem 281: 17882–17889

    Article  PubMed  CAS  Google Scholar 

  415. Zordoky BN, El-Kadi AO (2009) Role of NF-kappaB in the regulation of cytochrome P450 enzymes. Curr Drug Metab 10: 164–178

    Article  PubMed  CAS  Google Scholar 

  416. Nikolaidou-Neokosmidou V, Zannis VI, Kardassis D (2006) Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway. Biochem J 398: 439–450

    Article  PubMed  CAS  Google Scholar 

  417. Zhao B, Hou S, Ricciardi RP (2003) Chromatin repression by COUP-TFII and HDAC dominates activation by NF-kappaB in regulating major histocompatibility complex class I transcription in adenovirus tumorigenic cells. Virology 306: 68–76

    Article  PubMed  CAS  Google Scholar 

  418. Bonta PI, van Tiel CM, Vos M et al (2006) Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler Thromb Vasc Biol 26: 2288–2294

    Article  PubMed  CAS  Google Scholar 

  419. Harant H, Lindley IJ (2004) Negative cross-talk between the human orphan nuclear receptor Nur77/NAK-1/TR3 and nuclear factor-kappaB. Nucleic Acids Res 32: 5280–5290

    Article  PubMed  CAS  Google Scholar 

  420. Diatchenko L, Romanov S, Malinina I et al (2005) Identification of novel mediators of NF-kappaB through genome-wide survey of monocyte adherence-induced genes. J Leukoc Biol 78: 1366–1377

    Article  PubMed  CAS  Google Scholar 

  421. Saijo K, Winner B, Carson CT et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137: 47–59

    Article  PubMed  CAS  Google Scholar 

  422. Aherne CM, McMorrow J, Kane D et al (2009) Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis. Mol Immunol 46: 3345–3357

    Article  PubMed  CAS  Google Scholar 

  423. de Léséleuc L, Denis F (2006) Inhibition of apoptosis by Nur77 through NF-kappaB activity modulation. Cell Death Differ 13: 293–300

    Article  PubMed  CAS  Google Scholar 

  424. Li X, Tai HH (2009) Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 30: 1606–1613

    Article  PubMed  CAS  Google Scholar 

  425. Pei L, Castrillo A, Chen M et al (2005) Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J Biol Chem 280: 29256–29262

    Article  PubMed  CAS  Google Scholar 

  426. McEvoy AN, Murphy EA, Ponnio T et al (2002) Activation of nuclear orphan receptor NURR1 transcription by NF-kappa B and cyclic adenosine 5′-monophosphate response element-binding protein in rheumatoid arthritis synovial tissue. J Immunol 168: 2979–2987

    PubMed  Google Scholar 

  427. El-Asmar B, Giner XC, Tremblay JJ (2009) Transcriptional cooperation between NF-kappaB p50 and CCAAT/enhancer binding protein beta regulates Nur77 transcription in Leydig cells. J Mol Endocrinol 42: 131–138

    Article  PubMed  CAS  Google Scholar 

  428. Hong CY, Park JH, Ahn RS et al (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24: 2593–2604

    Article  PubMed  CAS  Google Scholar 

  429. Martens C, Bilodeau S, Maira M et al (2005) Protein-protein interactions and transcriptional antagonism between the subfamily of NGFI-B/Nur77 orphan nuclear receptors and glucocorticoid receptor. Mol Endocrinol 19: 885–897

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from Interuniversity Attraction Poles (IAP) 6/18 (to GH), a GOA from Ghent University (to GH). I.M.E. Beck and K. De Bosscher are postdoctoral fellows of the Research Foundation - Flanders (FWO–Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolien De Bosscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Beck, I.M.E., Haegeman, G., De Bosscher, K. (2010). Molecular Cross-Talk Between Nuclear Receptors and Nuclear Factor-κB. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_10

Download citation

Publish with us

Policies and ethics