Skip to main content

Microbial Community Structure and Diversity as Indicators for Evaluating Soil Quality

  • Chapter
  • First Online:
Biodiversity, Biofuels, Agroforestry and Conservation Agriculture

Abstract

The living soil system is of primary importance in sustainable agricultural production. Soil quality is considered as an integrative indicator of environmental quality, food security and economic viability. Therefore, soil itself serves as a potential indicator for monitoring sustainable land management. As part of the soil quality concept, a healthy soil supports high levels of biological diversity, activity, internal nutrient cycling and resilience to disturbance. The use of microbial community structure and diversity as an indicator to monitor soil quality is challenging due to little understanding of the relationship between community structure and soil function. This review addresses two critical questions regarding soil quality: (1) which soil microbial properties, particularly diversity and community structure, most effectively characterize soil quality and can be used as indicators, and (2) how can soil quality assessed by such indicators be improved or maintained?

We provide an overview of available techniques to characterize microbial community structure and diversity, and furnish information pertaining to strategies that can improve microbial diversity, including mycorrhizae, in relation to soil quality by adopting suitable agricultural practices to sustain soil and crop productivity. These techniques include those for structural profiling, i.e. fatty acid methyl ester analysis, genetic profiling, i.e. PCR-DGGE, SSCP, T-RFLP, functional profiling, i.e. catabolic profiling, diversity of enzyme activity, and to profile both structural and functional communities comprehensively, i.e. gene chip. We identify the importance of minimum data sets (MDS) of microbial indicators, such that they must be (i) compatible with basic ecosystem processes in soil as well as physical or chemical indicators of soil health, (ii) sensitive to management in acceptable time frames, (iii) easy to assess or measure, (iv) composed of robust methodology with standardized sampling techniques, (v) cost-effective, and (vi) relevant to human goals, food security, agricultural production, sustainability and economic efficiency. We focus on specific agricultural strategies such as tillage, crop rotations, organic amendments and microbial inoculation to improve soil quality by managing microbial communities and diversity. Overall, we provide techniques to assess microbial communities and diversity, and their management through agricultural practices to improve quality of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acinas S, Rodriguez-Valera R, Pedros-Alio C (1997) Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol 24:27–40

    CAS  Google Scholar 

  • Acosta-Martinez V, Zobeck TM, Gill TE, Kennedy AC (2003) Enzyme activities and microbial community structure in semiarid agricultural soils. Biol Fert Soils 38:216–227

    CAS  Google Scholar 

  • Acosta-Martinez V, Mikh MM, Vigil MF (2007) Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains. Appl Soil Ecol 37:41–52

    Google Scholar 

  • Allison SD, Martiny BH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Nat Acad Sci USA 150:11512–11519

    Google Scholar 

  • Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fert Soil 37:73–82

    Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–149

    CAS  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to assess soil quality. Agric Ecosys Environ 98:285–293

    Google Scholar 

  • Aseri GK, Tarafdar JC (2006) Fluorescien diacetate: a potential biological indicator for arid soils. Arid Land Res Manage 20:87–99

    CAS  Google Scholar 

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bio-indicators. Appl Soil Ecol 30:21–33

    Google Scholar 

  • Bakker PAHM, Glandorf DCM, Viebahn M, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat. Anton van Leeuwenhoek 81:617–624

    CAS  Google Scholar 

  • Barrios E, Delve RJ, Bekunda M, Mowo J, Agunda J, Ramisch J, Trejo MT, Thomas RJ (2006) Indicator of soil quality: a south-south development of a methodological guide for liking local and technical knowledge. Geoderma 135:248–259

    Google Scholar 

  • Bej AK, Perlin M, Atlas RM (1991) Effect of introducing genetically engineered microorganisms on soil microbial community diversity. FEMS Microbiol Ecol 86:169–176

    Google Scholar 

  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    CAS  Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc Royal Soc London 269:2595–2601

    Google Scholar 

  • Bloem J, de Ruiter P, Bouwman LA (1994) Soil food webs and nutrient cycling in agroecosystems. In: van Elsas JD, Trevors JT, Wellington HME (eds) Modern Soil Microbiology. Marcel Dekker, New York, pp 245–278

    Google Scholar 

  • Bloem J, Breure AM (2003) Microbial indicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and iomonitors. Elsevier, Oxford, pp 259–282

    Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144

    CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    CAS  Google Scholar 

  • Boivin MEY, Breure AM, Posthuma L, Rutgers M (2002) Determination of field effects of contaminants: significance of pollution-induced community tolerance. Human Ecol Risk Assess 8:1035–1055

    Google Scholar 

  • Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49:50–62

    CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    CAS  Google Scholar 

  • Bressan M, Mougel C, Dequiedt S (2008) Response of soil bacterial community structure to successive perturbations of different types and intensities. Environ Microbiol 10:2184–2187

    Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    CAS  Google Scholar 

  • Bunemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    CAS  Google Scholar 

  • Bunning S, Jimenez JJ (2003) Indicators and assessment of soil biodiversity/soil ecosystem functioning for farmers and governments. Presented in OECD expert meeting on soil erosion and biodiversity, Rome, Italy, 25–28 March

    Google Scholar 

  • Calderón FJ, Jackson LE, Scow KM, Rolston DE (2001) Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Sci Soc Am J 65:118–126

    Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtitre plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    CAS  Google Scholar 

  • Carter MR (1994) Conservation tillage in temperate agro-ecosystems. Lewis Publishers/CRC Press, Boca Raton, FL, 390

    Google Scholar 

  • Casamayor EO, Schafer H, Baneras L, Pedros-Alio C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    CAS  Google Scholar 

  • Chang YJ, Hussain AKMA, Stephen JR, Mullen MD, White DC, Peacock A (2001) Impact of herbicides on the abundance and structure of beta-subgroup ammonia oxidizer communities in soil microcosms. Environ Toxicol Chem 20:2462–2468

    CAS  Google Scholar 

  • Chapman SJ, Campbell CD, Edwards AC, McHenery JG (2000) Assessment of the potential of new biotechnology environmental monitoring techniques. Report no. SR (99) 10F, Macaulay Research and Consultancy Services, Aberdeen

    Google Scholar 

  • Chelius MK, Triplett EW (1999) Rapid detection of arbuscular mycorrhizae in roots and soil of an intensively managed turfgrass system by PCR amplification of small subunit rDNA. Mycorrhiza 9:61–64

    CAS  Google Scholar 

  • Choi KH, Dobbs FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Method 36:203–213

    CAS  Google Scholar 

  • Clapp JP, Young JPW, Merryweather J, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural communitiy. New Phytol 130:259–265

    Google Scholar 

  • Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol 44:319–328

    CAS  Google Scholar 

  • Crecchio C, Gelsomino A, Ambrosoli R, Minati JL, Ruggiero P (2004) Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biol Biochem 36:1873–1883

    CAS  Google Scholar 

  • Crecchio C, Curci M, Pellegrino A, Ricciuti P, Tursi N, Ruggiero P (2007) Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biol Biochem 39:1391–1400

    CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Effects of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413

    CAS  Google Scholar 

  • Culman SW, Duxbury JM, Lauren JG, Theis JE (2006) Microbial community response to soil solarization in Nepal’s rice-wheat cropping system. Soil Biol Biochem 38:3359–3371

    CAS  Google Scholar 

  • Curl E (1963) Control of plant diseases by crop rotation. Botan Rev 29:413–479

    Google Scholar 

  • Dabire AP, Hien V, Kisa M, Bilgo A, Sangare KS, Plenchette C, Galiana A, Prin Y, Duponnois R (2007) Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection. Mycorrhiza 17:537–545

    CAS  Google Scholar 

  • Dalgaard T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agric Ecosyst Environ 100:39–51

    Google Scholar 

  • Dang MV (2007) Qualitative and quantitative soil quality assessments of tea enterprises in Northern Vietnam. Afr J Agric Res 2:455–462

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    CAS  Google Scholar 

  • Davis LC, Castro-Diaz S, Zhang O, Erickson LE (2002) Benefits of vegetation for soils with organic contaminants. Crit Rev Plant Sci 21:457–491

    CAS  Google Scholar 

  • Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol Biochem 30:1989–2000

    CAS  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance. Soil Biol Biochem 33:1143–1153

    CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soil can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    CAS  Google Scholar 

  • De Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl Environ Microbiol 61:3443–3453

    Google Scholar 

  • Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Doran JW, Leman DC, Bezdicek DF, Stewart BA, SSSA (eds) Defining soil quality for a sustainable environment. Proceedings of a symposium, Minneapolis, MN, 4–5 November 1992, pp 107–124

    Google Scholar 

  • Diosma G, Aulicino M, Chidichimo H, Balatti PA (2006) Effect of tillage and N fertilization on microbial physiological profile of soils cultivated with wheat. Soil Till Res 91:236–243

    Google Scholar 

  • Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems. Out Agric 29:55–62

    Google Scholar 

  • Doran JW, Safely M (1997) Defining and assessing soil health and sustainable productivity. In: Pinehurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI, Wallingford, Oxon, pp 1–28

    Google Scholar 

  • Doran JW, Coleman DF, Bezdick DF, Stewart BA (eds) (1994) Defining soil quality for sustainable environment. SSSA Special publication number 35. Soil Science Society of America. Inc. and America Society of Agronomy, Inc. Madison, Wisconsin

    Google Scholar 

  • Doran JW, Jones AJ (1996) Methods for assessing soil quality. SSSA Special publication number 49. Soil Science Society of America, Madison, Wisconsin, p 410

    Google Scholar 

  • Doran JW, Parkins TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Douds DD, Galvez L, Franke-Snyder M, Reider C, Drinkwar LE (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ 65:257–266

    Google Scholar 

  • Douds DD, Janke RR, Peters SE (1993) VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agric Ecosyst Environ 43:325–335

    Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93

    Google Scholar 

  • Domsch KH, Jagnow G, Anderson TH (1983) An ecological concept for the assessment of side effects of agrochemical on soil microorganisms. Residue Rev 86:65–105

    CAS  Google Scholar 

  • Drenovsky RE, Elliot GN, Graham KJ, Scow KM (2004) Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol Biochem 36:1793–1800

    CAS  Google Scholar 

  • Drenovsky RE, Feris KP, Batten KM, Hristova K (2008) New and current microbiological tools for ecosystem ecologists: towards a goal of linking structure and function. Am Midl Nat 160:140–159

    Google Scholar 

  • Drijber RA, Doran JW, Pankhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430

    CAS  Google Scholar 

  • Egeston-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Google Scholar 

  • Egli S, Mozafar A (2001) Eine Standardmethod zur Erfassung des Mykkorrhiza-Infektionspotenzials in Landwirtschaftsböden. VBB Bull 5:6–7

    Google Scholar 

  • El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    CAS  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular arbuscular mycorrhizas colonization of maize. New Phytol 114:65–71

    Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71:8335–8343

    CAS  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in ­southern Brazil. Soil Till Res 92:18–29

    Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Philip JG, Wagoner P, Drinkwater L, Morton J (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Google Scholar 

  • Franke-Whittle I, Klammer S, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J Microbiol Method 62:37–56

    CAS  Google Scholar 

  • Gans J, Murray W, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1389

    CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterisation of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Garlynd MJ, Roming DE, Harris RF, Kukakov AV (1994) Descriptive and analytical characterization of soil quality/health. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication Number 35, Wisconsin, pp 159–168

    Google Scholar 

  • Gaur A, Sharma MP, Adholeya A, Chauhan SP (1998) Variation in the spore density and percentage of root length colonized by arbuscular mycorrhizal fungi at rehabilitated waterlogged sites. J Trop Forest Sci 10:542–551

    Google Scholar 

  • Gentry TJ, Wickham GS, Scadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    CAS  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257–270

    Google Scholar 

  • Giller PS (1996) The diversity of soil communities, the poor man’s tropical forest. Biodivers Conserv 5:135–168

    Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agro-ecosystem function. Appl Soil Ecol 6:3–16

    Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborne AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticides regimes. Appl Environ Microbiol 70:2692–2701

    CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–25

    Google Scholar 

  • Govaerts B, Sayre KD, Deckers J (2006) A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Till Res 87:163–174

    Google Scholar 

  • Govaerts B, Mezzalama M, Unno Y, Sayer KD, Luna-Guido M, Vanherck K, Dendoovan L, Deckers J (2007a) Influence of tillage, residue management, and crop rotation on microbial biomass and catabolic diversity. Appl Soil Ecol 37:18–30

    Google Scholar 

  • Govaerts B, Sayre KD, Lichter K, Dendooven L, Deckers J (2007b) Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 291:39–54

    CAS  Google Scholar 

  • Govaerts B, Fuentes M, Sayre KD, Mezzalama M, Nicol JM, Deckers J, Etchevers J, Figueroa-Sandoval B (2007c) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Till Res 94:209–219

    Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J, Lichter K, Troch V, Vanherck K, De Corte P, Deckers J (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38:197–210

    Google Scholar 

  • Govidarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Schachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal sysmbiosis. Nature 435:819–823

    Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edward AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2004) Assessing shift in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Google Scholar 

  • Griffiths BS (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Google Scholar 

  • Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl Soil Ecol 16:49–61

    Google Scholar 

  • Günther S, Groth I, Grabley S, Munder T (2005) Design and evaluation of oligonucleotide microarrays for the detection of different species of the genus Kitasatospora. J Microbiol Method 65:226–236

    Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402

    CAS  Google Scholar 

  • Harrier LA, Watson CA (2003) The role of arbucular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79:185–225

    Google Scholar 

  • Harris RF, Bezdicek DF (1994) Descriptive aspects of soil quality/health. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special publication number 35, Wisconsin, pp 23–36

    Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    CAS  Google Scholar 

  • Hartmann M, Fliiessbach A, Oberholzer HR, Widmer F (2006) Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiol Ecol 57:378–388

    CAS  Google Scholar 

  • He ZL, Yang XE, Baligar VC, Calvert DV (2003) Microbiological and biochemical indexing systems for assessing quality of acid soils. Adv Agron 78:89–138

    CAS  Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007a) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. Int Soc Microb Ecol (ISME) J 1:67–77

    CAS  Google Scholar 

  • He Z, Deng Y, Nostrand JV, Wu L, Hemme C, Liebich J, Gentry TJ, Zhou J (2007b) Geochip 3.0: further development and applications for microbial community analysis. ASA-CSSA-SSSA/2007 international annual meetings, 4–8 Nov, New Orleans, Louisianas

    Google Scholar 

  • Herrick JE (2000) Soil quality: an indicator of sustainable management? Appl Soil Ecol 15:75–83

    Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: van Elsas JD, Trevors JT, Welligton EMH (eds) Modern soil microbiology. Mercel Dekker, New York, pp 353–373

    Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Google Scholar 

  • Howard RJ (1996) Cultural control of plant diseases: a historical perspective. Can J Plant Pathol 18:145–150

    Google Scholar 

  • Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization pattern for analysis of microbial community structure under field and green house conditions. FEMS Microbiol Ecol 26:151–163

    CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang CH, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    CAS  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A (eds) Microbial communities: functional versus structural approaches. Springer, Berlin, pp 259–260

    Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ bio-stimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    CAS  Google Scholar 

  • Jackson LE, Calderón FJ, Steenwerth KL, Scow KM, Rolston DE (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114:305–317

    CAS  Google Scholar 

  • Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188

    CAS  Google Scholar 

  • Jama B, Swinkels RA, Buresh RJ (1997) Agronomic and economic evaluation of organic and inorganic sources of phosphorus in western Kenya. Agron J 89:597–604

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    CAS  Google Scholar 

  • Jeffries P, Gianinazi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson NC, Pfleger FL (1992) VA mycorrhizae and cultural stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, WI, pp 71–100

    Google Scholar 

  • Johnson NC, Copeland PJ, Crookston RK, Pflegger FL (1992) Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387–390

    Google Scholar 

  • Jung SY, Lee JH, Chai YG, Kim SJ (2005) Monitoring of microorganisms added into oil-contaminated microenvironments by terminal-restriction fragment length polymorphism analysis. J Microbiol Biotechnol 15:1170–1177

    CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization II Field studies. Plant Soil 231:65–79

    CAS  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23–29

    Google Scholar 

  • Kandeler E, Böhm KE (1996) Temporal dynamics of microbial biomass, xylanase activity, N-mineralization and potential nitrification in different tillage systems. Appl Soil Ecol 5:221–230

    Google Scholar 

  • Kandeler E, Tscherko D, Spiegel H (1999) Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biol Fertil Soil 28:343–351

    CAS  Google Scholar 

  • Karlen DL (2004) Soil quality as an indicator of sustainable tillage practices. Soil Till Res 78:129–130

    Google Scholar 

  • Karlen DL, Andrews SS (2000) The soil quality concept: a tool for evaluating sustainability. In: Elmholt S, Stenberg B, Grontund A, Nuutinen V (eds) Soil stress, quality and care. DIAS Report no 38, Danish Institute of Agricultural Sciences, Tjele, Denmark

    Google Scholar 

  • Karlen DL, Andrew SS, Wienhold BJ, Doran JW (2003a) Soil quality: Humankind’s foundation for survival. J Soil Water Conserv 58:171–179

    Google Scholar 

  • Karlen DL, Andrew SS, Wienhold BJ (2003b) Soil quality, fertility and health- historical context, status and perspective. In: Schjonning P, Christensen BT, Elmholt S (eds) Managing soil quality-challenges in modern agriculture. CABI, Oxon, UK

    Google Scholar 

  • Karlen DL, Hurrley EG, Andrews SS, Cambardella CA, Meek DW, Duffy MD, Mallarino AP (2006) Crop rotation effects on soil quality at three Northern corn/soybean-belt locations. Agron J 98:484–495

    Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    CAS  Google Scholar 

  • Kelly JJ, Hoggblom M, Tate RL III (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465

    CAS  Google Scholar 

  • Kemp PF, Sherr BF, Sherr EB, Cole JJ (1993) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, FL

    Google Scholar 

  • Kennedy P, Smith KL (1995) Soil microbial diversity and sustainability of agricultural soils. Plant Soil 170:75–86

    CAS  Google Scholar 

  • Kennedy N, Brodie E, Conolly J, Clipson N (2004) Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ Microbiol 6:1070–1080

    CAS  Google Scholar 

  • Kjoller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil 226:189–196

    CAS  Google Scholar 

  • Kling M, Jakobsen I (1998) Arbuscular myccorhiza in soil quality assessment. Ambio 27:29–34

    Google Scholar 

  • Kozdroj J, Trevor JT, van Elsas JD (2004) Influence of introduced biocontrol agents in maize seedling growth and bacterial community structure in the rhizosphere. Soil Biol Biochem 36:1775–1784

    CAS  Google Scholar 

  • Langdale GW, West LT, Bruce RR, Miller WP, Thomas AW (1992) Restoration of eroded soil with conservation tillage. Soil Technol 5:81–90

    Google Scholar 

  • Larson WE, Pierce FJ (1994) The dynamics of soil quality as a measure of sustainable management. In: Coran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for sustainable environment. SSSA Special publication number 35, Madison, WI, pp 37–51

    Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Lee DH, Zo YG, Kim SJ (1996) Non-radioactive method to study genetic profiles of natural bacterial communities by PCR-single stranded conformational polymorphism. Appl Environ Microbiol 62:3112–3120

    CAS  Google Scholar 

  • Le Roux X, Poly F, Currey P, Commeaux C, Hai B, Nicol GW, Prosser JI, Schloter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2:221–232

    Google Scholar 

  • Liebeg MA, Tanaka DL, Weinhold BJ (2004) Tillage and cropping effects on soil quality indicators in the northern Great Plains. Soil Till Res 78:131–141

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  Google Scholar 

  • Liu B, Gumpertz ML, Hu S, Ristaino JN (2007) Long-term effects or organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biol Biochem 39:2302–2316

    CAS  Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düering K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Google Scholar 

  • Lowrance R, Williams RG (1988) Carbon movement in runoff and erosion under simulated rainfall conditions. Soil Sci Soc Am J 52:1445–1448

    Google Scholar 

  • Loy A, Küsel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulphate-reducing prokaryotes in low-sulfate, acidic fens reveal co-occurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009

    CAS  Google Scholar 

  • Loy A, Taylor MW, Bodrossy L, Wagner M (2006) Applications of nucleic acid microarrays in soil microbial ecology. In: Cooper JE, Rao JR(eds) Molecular approaches for soil, rhizosphere and plant microorganism analysis. CAB International, Wellingford, Oxforshire, U.K. pp 18–24

    Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247

    CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    CAS  Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    CAS  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphisms (T-RFLP): An emerging method for characterizing diversity among homologus population of amplification products. Curr Opin Microbiol 2:323–327

    CAS  Google Scholar 

  • Marsh TL (2005) Culture-independent microbial community analysis with terminal restriction fragment length polymorphisms. Method Enzymol 397:308–329

    CAS  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Google Scholar 

  • Marschner P, Crowley DE, Lierberei R (2001a) Arbuscular mycorrhizal infection changes in the bacterial 16S rRNA gene community composition in rhizosphere of maize. Mycorrhiza 11:297–302

    CAS  Google Scholar 

  • Marschner P, Yang CH, Lierberei R, Crowley DE (2001b) Soil and plant specific effects on bacterial communities composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    CAS  Google Scholar 

  • Marschner P, Crowley DE, Yang CH (2004) Development of specific rhizosphere bacterial communities in plant species, nutrition and soil type. Plant Soil 261:199–208

    CAS  Google Scholar 

  • Marx M-C, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    CAS  Google Scholar 

  • Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Akkerman ADL, van Elsas JD, De-Briijn FJ (eds) Molecular Microbial Ecology Manual. Kluwer, Boston, pp 3.221–3.328

    Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhiza1 fungal communities in Kenyana ferralsol. Agric Ecosyst Environ 119:22–32

    Google Scholar 

  • Mawdsley JL, Burns RG (1994) Inoculation of plants with Flavobacterium P25 results in altered rhizosphere enzyme activities. Soil Biol Biochem 26:871–882

    CAS  Google Scholar 

  • Melero S, Porras JCR, Herencia JF, Madejon E (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Till Res 90:162–170

    Google Scholar 

  • Meithling R, Weiland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin and inoculation with Sinorhizobium meliloti L 33. Microb Ecol 41:43–56

    Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular-arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255

    Google Scholar 

  • Miller M, Palojarvi A, Rangger A, Reeslev M, Kjoler A (1998) The use of fluorogenic substrates to measure fungal presence and activity in soil. Appl Environ Microbiol 64:613–617

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conard R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    CAS  Google Scholar 

  • Monokrousos N, Papatheodorou EM, Diamantopoulos JD, Stamou GP (2006) Soil quality variables in organically and conventionally cultivated field sites. Soil Biol Biochem 38:1282–1289

    CAS  Google Scholar 

  • Moran AC, Muller A, Manzano M, Gonzalez B (2006) Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bio-augmentation with Pseudomonas sp ADP. J Appl Microbiol 101:26–35

    CAS  Google Scholar 

  • Mummey DL, Stahl PD (2003) Spatial and temporal variability of bacterial 16S rDNA-based T-RFLP patterns derived from soil of two Wyoming grassland ecosystems. FEMS Microbiol Ecol 46:113–120

    CAS  Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    CAS  Google Scholar 

  • Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol Ecol 23:183–193

    CAS  Google Scholar 

  • Nakatsu CH, Torsvik V, Ovreds L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction. Soil Sci Soc Am J 64:1382–1388

    CAS  Google Scholar 

  • Naseby DC, Lynch JM (1997) Rhizosphere soil enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol Biochem 29:1353–1362

    CAS  Google Scholar 

  • National Research Council (1993) Soil and water quality: an agenda for agriculture. National Academy, Washington, DC, p 516

    Google Scholar 

  • Nielsen MN, Winding A (2002). Microorganisms as indicators of soil health. National Environmental Research Institute, Technical Report no. 388. National Environmental Research Institute, Denmark. (http;//www.dmu.dk/1_viden/2_Publicakationer/_3_fagrapporter/rapporter?FR388.pdf)

  • Nogueira MA, Albino UB, Brandao-Junior O, Braun G, Cruz MF, Dias BA, Duarte RTD, Gioppo NMR, Menna P, Orlandi JM, Raiman MP, Rampazo LGL, Santos JMD, Hungria M, Andrade G (2006) Promising indicators for assessment of agroecosystems alternation among natural, reforestation and agricultural land use in Southern Brazil. Agric Ecosys Environ 115:237–247

    Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agro-ecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) A rapid and sensitive detection of point mutations and genetic polymorphisms using polymerase chain reaction. Genomics 5:874–879

    CAS  Google Scholar 

  • Ovreas L (2000) Population and community level approaches for analyzing microbial diversity in natural environments. Ecol Lett 3:236–251

    Google Scholar 

  • Ovreas L, Torsvik VV (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbiol Ecol 36:303–315

    CAS  Google Scholar 

  • Pace NR (1996) New perspective on the natural microbial world: molecular microbial ecology. ASM News 62:463–470

    Google Scholar 

  • Pankhurst CE, Hawke BG, MacDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, O’brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Aus J Exp Agric 35:1015–1028

    Google Scholar 

  • Parham JA, Deng SP, Da HN, Sun YH, Raun WR (2003) Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol Fertil Soil 38:209–215

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (2003) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Altern Agric 7:5–7

    Google Scholar 

  • Patra AK, Abbadie L, Clays A, Degrange V, Grayston S, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Richaume A, Le Roux X (2005) Effect of grazing on microbial functional groups involved in soil N dynamics. Ecol Monogr 75:65–80

    Google Scholar 

  • Patra AK, Abbadie L, Clays A, Degrange V, Grayston S, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Le Roux X (2006) Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol 8:1005–1016

    CAS  Google Scholar 

  • Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, Van Elsas JD, Seldin L, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Till Res 90:16–28

    Google Scholar 

  • Pennisi E (2004) The secret life of fungi. Science 304:1620–1621

    CAS  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR—single stranded-conformation-polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    CAS  Google Scholar 

  • Pfiffner L, Mäder P (1997) Effects of biodynamic, organic and conventional production systems on earthworm populations. Entomol Res Org Agric (special edition of Biological Agriculture and Horticulture) 15:3–10

    Google Scholar 

  • Phatak SC, Dozier JR, Bateman AG, Brunson KE, Martini NL (2002) Cover crops and conservation tillage in sustainable vegetable production. In: van Santen E (eds) Making conservation tillage conventional building a future on 25 years research. Proceeding 25th annual southern conservation tillage conference for sustainable agriculture. Auburn, AL, pp 401–403

    Google Scholar 

  • Pierce FJ, Larson WE, Dowdy RH (1984) Soil loss tolerance: maintenance of long-term soil productivity. J Soil Water Conserv 39:136–138

    Google Scholar 

  • Pierce FJ, Rice CW (1998) Crop rotation and its impact on efficiency of water and nitrogen use. In: Hargrove WL (ed) Cropping strategies for efficient use of water and nitrogen, special publication no 51. American Society of Agronomy, Madison, WI, pp 21–36

    Google Scholar 

  • Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. American Society for Microbiology Press, Washington, DC, pp 101–113

    Google Scholar 

  • Praveen-Kumar, Tarafdar JC (2003) 2, 3, 5-triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol Fertil Soil 38:186–189

    Google Scholar 

  • Purin S, Filho OK, Sturmer SL (2006) Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil. Soil Biol Biochem 38:1831–1839

    CAS  Google Scholar 

  • Ramesh A, Billore SD, Singh A, Joshi OP, Bhatia VS, Bundela VPS (2004a) Arylsulphatase activity and its relationship with soil properties under soybean (Glycine max) -based cropping systems. Indian J Agric Sci 74:9–13

    CAS  Google Scholar 

  • Ramesh A, Billore SD, Joshi OP, Bhatia VS, Bundela VPS (2004b) Phosphatase activity, phosphorous utilization efficiency and depletion of phosphate fractions in rhizosphere of soybean (Glycine max) genotypes. Indian J Agric Sci 74:150–152

    Google Scholar 

  • Rao AV, Tarafdar JC, Sharma SK, Praveen-Kumar, Aggarwal RK (1995) Influence of cropping systems on soil biochemical properties in an arid rainfed environment. J Arid Environ 31:237–244

    Google Scholar 

  • Redecker D, Hijri I, Wiemken A (2003) Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobotan 38:113–124

    Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Applying innovations and new technologies for international collaborative wheat improvement. J Agric Sci 144:95–115

    Google Scholar 

  • Ritz K, Mac Nicol JW, Nunan N, Grayston S, Millard P, Atkinson A, Gollotte A, Habeshaw D, Boag B, Clegg CD (2004) Spatial structure in soil chemical and microbiological properties in upland grassland. FEMS Microbiol Ecol 49:191–205

    CAS  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertilizer management and bioinoculant of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    CAS  Google Scholar 

  • Roming DL, Garlynd MJ, Harris RF, Mc Sweeney K (1995) How farmers assess soil health and soil quality? J Soil Water Conserv 50:229–235

    Google Scholar 

  • Rousseaux SA, Hartmann N, Rouard N, Soulas G (2003) A simplified procedure for terminal restriction fragment length polymorphism analysis of the soil bacterial community to study the effects of pesticides on soil microflora using 4, 6-dinitroorthocresol as a test case. Biol Fertil Soil 37:250–254

    CAS  Google Scholar 

  • Saini VK, Bhandare SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N, and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crop Res 89:39–47

    Google Scholar 

  • Sanchez PA, Palm CA, Buol SW (2003) Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma 114:157–185

    CAS  Google Scholar 

  • Saison C, Degrange V, Oliver R, Millard P, Commeaux C, Montange D, Le Roux X (2006) Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ Microbiol 8:247–257

    CAS  Google Scholar 

  • Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity – are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Google Scholar 

  • Sarathchandra SU, Burch G, Cox NR (1997) Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repense L.) and perennial rye grass (Lolium perenne L.) in long-term pasture. Appl Soil Ecol 6:239–299

    Google Scholar 

  • Schmalenberger A, Tebbe CC (2003) Bacterial diversity in maize rhizospheres: Conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ­ecological studies. Mol Ecol 12:251–262

    CAS  Google Scholar 

  • Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different ­evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563

    CAS  Google Scholar 

  • Schouten T, Bloem J, Didden WAM, Rutgers M, Siepel H, Posthuma L, Breure AM (2000) Development of a biological indicator for soil quality. Soc Environ Toxicol Chem Globe 1:30–33

    Google Scholar 

  • Schouten AJ, Bloem J, Didden W, Jagers OP, Akkerhuis G, Keidel H, Rutgers M (2002) Biological indicator for soil quality. Ecological quality of Dutch pastures on sandy soil in relation to grazing intensity. Report 607604003.RIVM,Bilthoven (in Dutch with English summary)

    Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effects of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565

    CAS  Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Tankouo Sandjong B, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171:719–736

    CAS  Google Scholar 

  • Sharma KL, Mandal UK, Srinivas K, Vittal KPR, Mandal B, Grace JK, Ramesh V (2005) Long-term soil management effects on crop yields and soil quality in dryland Alfisol. Soil Till Res 83:246–259

    Google Scholar 

  • Sharma MP, Adholeya A (2004) Influence of arbuscular mycorrhizal fungi and phosphorus fertilization on the post-vitro growth and yield of micropropagated strawberry in an alfisol. Can J Bot 82:322–328

    Google Scholar 

  • Sharma MP, Sharma SK (2006) Arbuscular mycorrhizal fungi: an emerging bioinoculant for production of soybean. SOPA Digest III:10–16

    Google Scholar 

  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Mycorrhizal dependency of Acacia nilotica var. cupriciformis to indigenous vesicular arbuscular mycorrhizal consortium in a wasteland soil. Mycorrhiza 6:441–446

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biol Biochem 30:1717–1723

    CAS  Google Scholar 

  • Sieverding E (1990) Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 29:369–390

    Google Scholar 

  • Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211–4215

    CAS  Google Scholar 

  • Singh BK, Munro S, Reid E, Reid B, Ord JM, Potts JM, Paterson E, Millard P (2006) Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Euro J Soil Sci 57:72–82

    CAS  Google Scholar 

  • Singer MJ, Edwig S (2000) Soil quality. In: Summer ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp G271–G298

    Google Scholar 

  • Six J, Elliot ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358

    CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heur H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 64:1220–1225

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis instead of symbios, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Soderberg KH, Probanza A, Jumpponen A, Baath E (2004) The microbial community in the rhizosphere determined by community-level physiological profile (CLPP) and direct soil- and cfu-PLFA techniques. Appl Soil Ecol 25:135–145

    Google Scholar 

  • Srivastava R, Roesti D, Sharma AK (2007) The evaluation of microbial diversity in a vegetable based cropping system under organic farming practices. Appl Soil Ecol 36:116–123

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM (2003) Soil microbial community composition and land use history in cultivated and grassland ecosystems in coastal California. Soil Biol Biochem 35:489–500

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderón FJ, Scow KM, Rolston DE (2005) Response of microbial community composition and activity in agricultural and grassland soils after a simulated ­rainfall. Soil Biol Biochem 37:2249–2262

    CAS  Google Scholar 

  • Stenberg B, Pell M, Torstensson L (1998) Integrated evaluation of variation in biological, chemical and physical soil properties. Ambio [Royal Swedish Academy of Sciences] 27:9–15

    Google Scholar 

  • Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicators. Acta Agric Scandinavia 49:1–24

    Google Scholar 

  • Stocking MA (2003) Tropical soil and food security: the next 50 years. Science 21:1356–1359

    Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till Res 72:107–123

    Google Scholar 

  • Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agro-ecosystem. Appl Environ Microbiol 70:5868–5874

    CAS  Google Scholar 

  • Swift MJ (1999) Integrating soils, systems and society. Nat Resour 35:12–20

    Google Scholar 

  • Taroncher-Oldenburg G, Griner EM, Francis CA, Ward BB (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol 69:1159–1171

    CAS  Google Scholar 

  • Taylor MW, Loy A, Wagner M (2007) Microarrays for studying the composition and function of microbial communities. In: Seviour RJ, Blackall LL (eds) The microbiology of activated sludge. IWA Publishing, London

    Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovrea OSL (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    CAS  Google Scholar 

  • Trasar-Cepeda C, Leiro’s MC, Seoane S, Gil-Sotres F (2000) Limitations of soil enzymes as indicators of soil pollution. Soil Biol Biochem 32:1867–1875

    CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Google Scholar 

  • van Bruggen AHC, Semenov AM, van Diepeningen AD, de Vos OJ, Blok WJ (2006) Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. Euro J Plant Pathol 115:105–122

    Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    CAS  Google Scholar 

  • van Diepeningen AD, de Vos OJ, Korthals GW, van Bruggen AHC (2006) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl Soil Ecol 31:120–135

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vazquez MM, César S, AzcÏŒn R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial populations and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Google Scholar 

  • Verchot LV, Borelli RB (2005) Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biol Biochem 37:625–633

    CAS  Google Scholar 

  • Visser S, Parkinson D (1992) Soil biological criteria as indicators of soil quality: soil microorganisms. Am J Altern Agric 7:33–37

    Google Scholar 

  • Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulphate-reducing prokaryotes. Method Enzymol 397:469–489

    CAS  Google Scholar 

  • Wardle DA, Bonner KI, Baker GM, Yeatas GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) The plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecolog Monogr 69:535–568

    Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 26:1837–1846

    Google Scholar 

  • Wang P, Durkalski JT, Yu WT, Hoitink HAJ, Dick WA (2006) Agronomic and soil responses to compost and manure amendments under different tillage systems. Soil Sci 171:456–467

    CAS  Google Scholar 

  • Warkentin BP, Fletcher HF (1997). Soil quality for intensive agriculture. Proceedings of the ­international seminar on soil environment and fertlizer management in intensive agriculture. National Institute of Agricultural Science, Tokyo, Japan, pp 594–598

    Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Le Roux X (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169

    CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219

    Google Scholar 

  • Whiteley AS, Bailey MJ (2000) Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400–2407

    CAS  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Google Scholar 

  • Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS, Kuczmarski TA (2002) High density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541

    CAS  Google Scholar 

  • Winding A (2004) Indicators of soil bacterial diversity. In: Agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis. Proceedings of an OECD expert meeting on soil erosion and soil biodiversity indicators, 25–28 March 2003, Rome, Italy, OECD, Paris, pp 495–504

    Google Scholar 

  • Winding A, Hund_Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Safety 62:230–248

    CAS  Google Scholar 

  • Wirth SJ, Wolf GA (1992) Microplate colorimetric assay for endo-acting cellulase, xylanase, chitinase, 1, 3-beta-glucanase and amylase extracted from forest soil horizons. Soil Biol Biochem 24:511–519

    CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggreagate stability and concentration of glomalin during tillage management transistion. Soil Sci Soc Am J 63:1825–1829

    CAS  Google Scholar 

  • Wu L, Thompson DK, Li R, Hurt RA, Tiedje JM, Zhou J (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790

    CAS  Google Scholar 

  • Yang Y, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on the DNA sequence diversity of microbial communities. Microbiol Ecol 39:72–79

    CAS  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. Int Soc Microb Ecol J 1:163–179

    CAS  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysacharides in the characterization of microbial communities in soil: a review. Biol Fertil Soil 29:111–129

    CAS  Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    CAS  Google Scholar 

  • Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78

    CAS  Google Scholar 

  • Zvyaginstsev DG, Kochkina GA, Kojhevin PA (1984) New approaches to the investigation microbial succession in soil. In: Mischustin EN (ed) Organisms as components of biogeocenosis soil. Nauka, Moscow, pp 81–103

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Xavier Le Roux, INRA, CNRS, Université de Lyon, Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France, for his critical comments and corrections of earlier draft of this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sharma, S.K. et al. (2010). Microbial Community Structure and Diversity as Indicators for Evaluating Soil Quality. In: Lichtfouse, E. (eds) Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9513-8_11

Download citation

Publish with us

Policies and ethics