Skip to main content

Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms

  • Chapter
  • First Online:

Abstract

Arbuscular mycorrhizal associations imply a remarkable reprogramming­ of functions in both plant and fungal symbionts. The consequent alterations on plant physiology have a clear impact on the plant response to biotic stresses. In this chapter we discuss the effects of the mycorrhizal symbiosis on plant susceptibility/resistance to potential deleterious organisms, including root and shoot pathogens, root parasitic plants and phytophagous insects, highlighting the mechanisms that may be operating in each particular case. Special attention is given to the modulation of plant defence responses in mycorrhizal systems, as it may affect all interactions. Finally we focus on the priming of jasmonate regulated plant defence mechanisms that seem to mediate the induction of resistance by arbuscular mycorrhizas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhiza

AMF:

Arbuscular mycorrhizal fungi

MIR:

mycorrhiza-induced resistance

JA:

jasmonate

SA:

Salicylic acid

Nm:

Non-mycorrhizal plants

Gm:

Glomus mosseae colonized plants

Hpi:

hours post inoculation

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f sp chrysanthemi­. Phytopathol 84:958–968

    Article  CAS  Google Scholar 

  • Bennett A, Bever J, Deane Bowers M (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:771–779

    Article  PubMed  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, López-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Caron M, Fortin JA, Richard C (1986) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8:12–16

    Article  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • D’Amelio R, Massa M, Gamalero E, D’Agostino G, Sampò S, Berta G, Faoro F, Iriti M, Bosco D, Marzachì C (2007) Preliminary results on the evaluation of the effects of elicitors of plant resistance on chrysanthemum yellows phytoplasma infection. Bull Insectol 60:317–318

    Google Scholar 

  • De Deyn GB, Biere A, Van Der Putten WH, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442

    Article  PubMed  Google Scholar 

  • De La Noval B, Perez E, Martinez B, Leon O, Martinez-Gallardo N, Delano-Frier J (2007) Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460

    Article  PubMed  Google Scholar 

  • de la Peña E, Rodriguez-Echeverria S, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defence systems. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, The Netherlands, pp 173–200

    Chapter  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Flors V, Karlen D, Lange E, Planchamp C, D’Alessandro M, Turlings TCJ, Ton J (2009) Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J 59:292–302

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kuehnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Galis I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defense responses. Plant Cell Environ 32:617–627

    Article  CAS  PubMed  Google Scholar 

  • Gange AC (2006) Insect-mycorrhizal interactions: patterns, processes, and consequences. In: Ohgushi T, Craig TP, Price PW (eds) Indirect interaction webs: nontrophic linkages through induced plant traits. Cambridge University Press, Cambridge, pp 124–144

    Google Scholar 

  • García-Chapa M, Batlle A, Laviña A, Camprubí A, Estaún V, Calvet C (2004) Tolerance increase to pear decline phytoplasma in mycorrhizal OHF-333 pear rootstock. Acta Hort 657:437–441

    Google Scholar 

  • Garcia Garrido JM, Ocampo JA (1988) Interaction between Glomus mosseae and Erwinia carotovora and its effects on the growth of tomato plants. New Phytol 110:551–555

    Article  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  PubMed  Google Scholar 

  • Gernns H, von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen – is a compensation possible? Mycorrhiza 11:237–243

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121:233–242

    Article  Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Nat Acad Sci 102:8066–8070

    Article  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149–157

    Article  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Ann Rev Microbiol 59:19–42

    Article  CAS  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Ann Rev Entomol 54:323–342

    Article  CAS  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochem 68:101–110

    Article  CAS  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochem 70:1589–1599

    Article  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Jaiti F, Kassami M, Meddich A, El Hadrami I (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. albedinis. J Phytopathol 156:641–646

    Article  CAS  Google Scholar 

  • Jung SC, García-Andrade J, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Pozo MJ (2009) Arbuscular mycorrhiza confers systemic resistance against Botrytis cinerea in tomato through priming of JA-dependent defense responses. In: Mauch-Mani B, Schmidt A (eds) Induced resistance: chances and limits, IOBC/wprs Bulletin, Working Group “Induced resistance in plants against insects and diseases.” Proceedings of the meeting at Granada (Spain) 8–16 May 2009 (in press)

    Google Scholar 

  • Kapoor R (2008) Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. OnLine J Biol Sci 8:49–56

    Article  CAS  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against verticillium-induced wilt in cotton. J Plant Protect Res 49:185–189

    Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Lee CS, Lee YJ, Jeun YC (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J 21:237–243

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The Netherlands, pp 345–365

    Chapter  Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  PubMed  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, Van den Bosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental­ stages of an arbuscular mycorrhizalsymbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Google Scholar 

  • López-Ráez JA, Charnikhova T, Mulder P, Kohlen W, Bino R, Levin I, Bouwmeester H (2008) Susceptibility of the tomato mutant high pigment-2 dg (hp-2 dg) to Orobanche spp infection. J Agric Food Chem 56:6326–6332

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Verstappen F, Ruyter-Spira C, Bouwmeester HJ (2009a) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 64:471–477

    Article  Google Scholar 

  • López-Ráez JA, Jung SC, Fernandez I, García JM, Bouwmeester H, Pozo MJ (2009b) Mycorrhizal symbiosis as a strategy for root parasitic weed control. In: Mauch-Mani B, Schmidt A (eds) Induced resistance: chances and limits, IOBC/wprs Bulletin, Working Group “Induced resistance in plants against insects and diseases.” Proceedings of the meeting at Granada (Spain) 8–16 May 2009 (in press)

    Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61: 2589–2601

    Article  PubMed  Google Scholar 

  • Moller K, Kristensen K, Yohalem D, Larsen J (2009) Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 49:120–125

    Article  Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease management. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, The Netherlands, pp 245–266

    Chapter  Google Scholar 

  • Nogales A, Aguirreolea J, Santa María E, Camprubí A, Calvet C (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: Disease development and polyamines. Plant Soil 31:177–187

    Article  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection 26:1682–1688

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Micro 6:763–775

    Article  CAS  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    Article  PubMed  Google Scholar 

  • Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2004) Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. J Plant Growth Regul 23:246–260

    Google Scholar 

  • Pieterse CMJ, León-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    CAS  PubMed  Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops – A review. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) ß-1, 3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2005) Jasmonates – Signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unravelling mycorrhiza induced resistance. Curr Opin Plant Biol 10:1–6

    Article  Google Scholar 

  • Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defences against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Heidelberg, pp 123–136

    Chapter  Google Scholar 

  • Rapparini F, Llusia J, Peñuelas J (2008) Effect of arbuscular mycorrhizal colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular-arbuscular my-corrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. Phytopathol Z 114:31–40

    Article  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Biol J Linne Soc 68:135–141

    Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146

    Article  CAS  Google Scholar 

  • Schonbeck F, Dehne HW (1989) VA-mycorrhiza and plant health Interrelationships between microorganisms and plants in soil. Proc Symp Liblice 1987:83–91

    Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant-Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Sharma MP, Adholeya A (2000) Sustainable management of arbuscular mycorrhizal fungi in the biocontrol of soil-borne plant diseases. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. Vol. I. Crop diseases. Kluwer/Plenum, New York, pp 117–138

    Chapter  Google Scholar 

  • Sharma AK, Johri BN, Gianinazzi S (1992) Vesicular-arbuscular mycorrhizae in relation to plant disease. World J Microbiol Biotechnol 8:559–563

    Article  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathol 95:76–84

    Article  CAS  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant-Microbe Interact 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f.sp. dianthi in the non-Vam species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005

    Article  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 1(85):199–209

    Article  Google Scholar 

  • Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp radicis-lycopersici. Biocontrol 51:393–400

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial­ microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008) The biocontrol effect of mycorrhization on soil-borne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Heidelberg/Germany, pp 307–320

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson WM, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathol 92:1329–1333

    Article  CAS  Google Scholar 

  • Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336

    Article  CAS  PubMed  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding by the Marie Curie program from the European Commission (ERG; PERG02-GA-2007-224751) and by the Spanish Ministry of Science and Innovation (AGL2006-08029). JALR and SJ are supported by the JAE program of the Spanish National Scientific Research Council (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Pozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pozo, M.J., Jung, S.C., López-Ráez, J.A., Azcón-Aguilar, C. (2010). Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_9

Download citation

Publish with us

Policies and ethics