Skip to main content

The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter

  • Chapter
  • First Online:

Abstract

Organic matter is mainly present in the top 20–30 cm of most soil profiles and is essentially an array of organic macromolecules consisting principally of combinations of carbon, oxygen, hydrogen, nitrogen, phosphorus and sulphur. Soil organic matter is commonly measured as the quantity of organic carbon. The global pool of organic carbon in soil to a depth of 1 m has been estimated at 1,200–1,550 Pg (2 m: 2,370–2,450 Pg), and as such is significantly greater than either the biological-biota (560 Pg) or atmospheric (760 Pg) carbon pools (Baldock 2007). Almost all organic matter in soil is directly and indirectly derived from plants via photosynthesis. Thus atmospheric carbon dioxide is transformed by reduction into simple and complex organic carbon compounds, which in combination with key nutrients enable the plant to function and grow. Carbon dioxide is released directly from plants by respiration, but most of the fixed carbon is retained and ultimately transferred to the soil ecosystem via a combination of spatially distinct pathways over a variety of timescales. The most important pathways are the direct addition of senes­-cent material as above-ground and below-ground detritus, return of ingested plant matter in animal faeces, and exudation of soluble organic ­compounds from roots (Howarth 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Resistance, the degree to which microbial composition remains unchanged following disturbance.

  2. 2.

    Resilience, the rate at which microbial composition returns to its original composition after the disturbance.

  3. 3.

    Functional redundancy, the ability of one microbial group to carry out a process at the same rate as another under the same environmental conditions (according to Allison and Martiny 2008).

References

  • Aira M, Sampedro L, Monroy F, Dominguez J (2008) Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol Biochem 40:2511–2516

    CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    PubMed  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519

    PubMed  CAS  Google Scholar 

  • Allison SD, Hanson CA, Treseder KK (2007a) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887

    CAS  Google Scholar 

  • Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007b) Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol Biochem 39:1770–1781

    CAS  Google Scholar 

  • Almendros G, Tinoco P, González-Vila FJ, Lüdemann HD, Sanz J, Velasco F (2001) 13C-NMR of forest soil lipids. Soil Sci 166:186–196

    CAS  Google Scholar 

  • Anderson J (1995) Soil organisms as engineers: microsite modulation of macroscale processes. In: Jones C, Lawton J (eds) Linking species and ecosystems. Chapman Hall, London, pp 94–106

    Google Scholar 

  • Antibus RK, Lauber C, Sinsabaugh RL, Zak DR (2006) Responses of Bradford-reactive soil protein to experimental nitrogen addition in three forest communities in northern lower Michigan. Plant Soil 288:173–187

    CAS  Google Scholar 

  • Appuhn A, Scheller E, Joergensen RG (2006) Relationships between microbial indices in roots and silt loam soils forming a gradient in soil organic matter. Soil Biol Biochem 38:2557–2564

    CAS  Google Scholar 

  • Badalucco L, Gelsomino A, Dell’orco S, Grego S, Nannipieri P (1992) Biochemical characterization of soil organic compounds extracted by 0.5 M K2SO4 before and after chloroform fumigation. Soil Biol Biochem 24:569–578

    CAS  Google Scholar 

  • Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    CAS  Google Scholar 

  • Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    CAS  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Baldock J (2007) Composition and cycling of organic carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, Germany, pp 1–36

    Google Scholar 

  • Baldock JA, Oades JM, Vassallo AM, Wilson MA (1989) Incorporation of uniformly labelled 13C-glucose carbon into the organic fraction of a soil. Carbon balance and CP/MAS 13C NMR measurements. Aust J Soil Res 27:725–746

    CAS  Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    CAS  Google Scholar 

  • Barea J (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria – present status and future prospects. Proceedings of the 4th international workshop on plant growth-promoting rhizobacteria, 5–10 October 1997, Sapporo, Japan. OECD, Paris

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P et al (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J G 81:343–351

    CAS  Google Scholar 

  • Bärlocher F, Corkum M (2003) Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101:247–252

    Google Scholar 

  • Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275

    CAS  Google Scholar 

  • Bastida F, Kandeler E, Moreno JL, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Google Scholar 

  • Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann HP, Sommer M et al (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40:67–77

    Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    PubMed  CAS  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    CAS  Google Scholar 

  • Billings SA, Ziegler SE (2005) Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Glob Change Biol 11:203–212

    Google Scholar 

  • Billings SA, Ziegler SE (2008) Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Change Biol 14:1025–1036

    Google Scholar 

  • Bossuyt H, Six J, Hendrix P (2004) Rapid incorporation of fresh residue-derived carbon into newly formed microaggregates within earthworm casts. Eur J Soil Sci 55:393–399

    Google Scholar 

  • Bossuyt H, Six J, Hendrix P (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258

    CAS  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N et al (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389

    PubMed  CAS  Google Scholar 

  • Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biol Biochem 38:2219–2232

    CAS  Google Scholar 

  • Broughton LC, Gross KL (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125:420–427

    Google Scholar 

  • Brown G (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    CAS  Google Scholar 

  • Brown G, Doube B (2004) Functional interactions between earthworms, microorganisms, organic matter and plants. Earthworm ecology, 2nd edn. London, CRC Press, pp 213–239

    Google Scholar 

  • Brown G, Barois P, Lavelle P (2000) Regulation of sol organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Google Scholar 

  • Bünemann E, Condron L (2007) Phosphorus and sulphur cycling in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, Germany, pp 65–92

    Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Google Scholar 

  • Buyer JS, Drinkwater LE (1997) Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J Microbiol Meth 30:3–11

    CAS  Google Scholar 

  • Carletti P, Vendramin E, Pizzeghello D, Concheri G, Zanella A, Nardi S et al (2009) Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant Soil 315:47–65

    CAS  Google Scholar 

  • Carney KM, Matson PA (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940

    CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448

    CAS  Google Scholar 

  • Chabbi A, Rumpel C (2009) Organic matter dynamics in agro-ecosystems – The knowledge gaps: guest editors’ introduction. Eur J Soil Sci 60:153–157

    CAS  Google Scholar 

  • Chander K, Ulrich E, Jörgensen RG, Klein T (2002) Decomposition of 14C labelled wheat straw in repeatedly fumigated and non-fumigated soils with different levels of heavy metal contamination. Biol Fert Soils 35:86–91

    CAS  Google Scholar 

  • Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J et al (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976

    CAS  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321

    PubMed  CAS  Google Scholar 

  • Clinton PW, Newman RH, Allen RB (1995) Immobilization of 15N in forest litter studies by 15N CPMAS NMR spectroscopy. Eur J Soil Sci 46:551–556

    Google Scholar 

  • Coleman D, Wall D (2007) Fauna: the engine for microbial activity and transport. In: Paul E (ed) Soil microbiology, ecology, and biochemistry. Academic Press, Amsterdam, The Netherlands, pp 163–194

    Google Scholar 

  • Conn CE, Day FP (1996) Response of root and cotton strip decay to nitrogen amendment along a barrier island dune chronosequence. Can J Bot 74:276–284

    Google Scholar 

  • Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT (2005) The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem 37:1726–1737

    CAS  Google Scholar 

  • Coq S, Barthes B, Oliver R, Rabary B, Blanchart E (2007) Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues – An experimental study (Madagascar). Soil Biol Biochem 39:2119–2128

    CAS  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition climate and litter quality. Trend Ecol Evol 10:63–66

    Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    PubMed  Google Scholar 

  • Cruz AF, Hamel C, Hanson K, Selles F, Zentner RP (2009) Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant Soil 315:173–184

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    CAS  Google Scholar 

  • Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8:1129–1137

    PubMed  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms, with observations on their habit. In: Ridely M (ed) The essential Darwin. Allen and Unwin, London, pp 237–256

    Google Scholar 

  • Deacon J (1985) Decomposition of filter paper cellulose by thermophilic fungi acting singly, in combination, and in sequence. T Brit Mycol Soc 85:663–669

    CAS  Google Scholar 

  • Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol Biochem 30:1989–2000

    CAS  Google Scholar 

  • Dijkstra FA, Hobbie SE, Knops JMH, Reich PB (2004) Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecol Lett 7:1192–1198

    Google Scholar 

  • Don A, Steinberg B, Schöning I, Pritsch K, Joschko M, Gleixner G (2008) Organic carbon sequestration in earthworm burrows. Soil Biol Biochem 40:1803–1812

    CAS  Google Scholar 

  • Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD (1996) Immobilization of a 15N-labeled nitrate addition by decomposing forest litter. Oecologia 105:141–150

    Google Scholar 

  • Duarte S, Pascoal C, Cássio F, Bärlocher F (2006) Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia 147:658–666

    PubMed  Google Scholar 

  • Dukes JS, Field CB (2000) Diverse mechanisms for CO2 effects on grassland litter decomposition. Glob Change Biol 6:145–154

    Google Scholar 

  • Edwards C (2000) Soil invertebrate controls and microbial interactions in nutrient and organic matter dynamics in natural and agroecosystems. In: Coleman D, Hendrix P (eds) Invertebrates as webmasters in ecosystems. CAB International, Wallingford, UK, pp 141–159

    Google Scholar 

  • Edwards IP, Cripliver JL, Gillespie AR, Johnsen KH, Scholler M, Turco RF (2004) Nitrogen availability alters macrofungal basidiomycete community structure in optimally fertilized loblolly pine forests. New Phytol 162:755–770

    Google Scholar 

  • Ekschmitt K, Griffiths BS (1998) Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment. Appl Soil Ecol 10:201–215

    Google Scholar 

  • Ekschmitt K, Klein A, Pieper B, Wolters V (2001) Biodiversity and functioning of ecological communities – why is diversity important in some cases and unimportant in others? J Plant Nutr Soil Sci 164:239–246

    CAS  Google Scholar 

  • Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability – Why is dead organic matter left over in the soil? Geoderma 128:167–176

    Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2007) Microbial use of maize cellulose and sugarcane sucrose monitored by changes in the 13C/12C ratio. Soil Biol Biochem 39:1888–1896

    CAS  Google Scholar 

  • Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Google Scholar 

  • Feng X, Simpson AJ, Wilson KP, Dudley Williams D, Simpson MJ (2008) Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geosci 1:836–839

    CAS  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462

    Google Scholar 

  • Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087

    Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    PubMed  CAS  Google Scholar 

  • Fonte S, Winsome T, Six J (2009) Earthworm populations in relation to soil organic matter dynamics and management in California tomato cropping systems. Appl Soil Ecol 41:206–214

    Google Scholar 

  • Franklin O, Högberg P, Ekblad A, Ågren GI (2003) Pine forest floor carbon accumulation in response to N and PK additions: bomb 14C modelling and respiration studies. Ecosystems 6:644–658

    CAS  Google Scholar 

  • Frey S, Elliott E, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional­ and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    CAS  Google Scholar 

  • Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229

    PubMed  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    CAS  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L, Huguet C, Thompson R, Sebastià M-T et al (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40:2803–2810

    CAS  Google Scholar 

  • Gattinger A, Höfle MG, Schloter M, Embacher A, Böhme F, Munch JC et al (2007) Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Environ Microbiol 9:612–624

    PubMed  CAS  Google Scholar 

  • Glaser B, Millar N, Blum H (2006) Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2. Glob Change Biol 12:1521–1531

    Google Scholar 

  • González-Pérez JA, González-Vila FJ, González-Vázquez R, Arias ME, Rodríguez J, Knicker H (2008) Use of multiple biogeochemical parameters to monitor the recovery of soils after forest fires. Org Geochem 39:940–944

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29

    Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F et al (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S et al (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    CAS  Google Scholar 

  • Gunapala N, Scow KM (1998) Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol Biochem 30:805–816

    CAS  Google Scholar 

  • Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35:1683–1692

    CAS  Google Scholar 

  • Haider K, Frederick LR, Flaig W (1965) Reactions between amino acid compounds and phenols during oxidation. Plant Soil 22:49–64

    CAS  Google Scholar 

  • Hamilton EW III, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG et al (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    PubMed  CAS  Google Scholar 

  • He JZ, Zheng Y, Chen CR, He YQ, Zhang LM (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soil Sediments 8:349–358

    CAS  Google Scholar 

  • Heal OW, Flanagan PW, French DD, Maclean SF (1981) Decomposition and accumulation of organic matter in tundra. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, UK, pp 587–634

    Google Scholar 

  • Hedlund K, Öhrn MS (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88:585–591

    Google Scholar 

  • Hendrix PF, Parmelee RW, Crossley DA Jr, Coleman DC, Odum EP, Groffman PM (1986) Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36:374–380

    Google Scholar 

  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Google Scholar 

  • Hopkins DW, Gregorich EG (2005) Carbon as a substrate for soil organisms. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, UK, pp 57–79

    Google Scholar 

  • Howarth W (2007) Carbon cycling and formation of organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Amsterdam, The Netherlands, pp 303–340

    Google Scholar 

  • Hutsch B, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    CAS  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems–a soil science perspective. Agr Ecosys Environ 104:399–417

    CAS  Google Scholar 

  • Janzen RA, Dormaar JF, McGill WB (1995) A community-level concept of controls on decomposition processes: decomposition of barley straw by Phanerochaete chrysosporium or Phlebia radiata in pure or mixed culture. Soil Biol Biochem 27:173–179

    CAS  Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80:5–23

    CAS  Google Scholar 

  • Jiang L (2007) Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88:1075–1085

    PubMed  Google Scholar 

  • Jiang L, Pu Z, Nemergut DR (2008) On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117:488–493

    Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    CAS  Google Scholar 

  • Johnson D, Booth R, Whiteley A, Bailey M, Read D, Grime J et al (2003) Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur J Soil Sci 54:671–677

    Google Scholar 

  • Johnston AE, Poulton PR, Coleman K, Donald LS (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57

    Google Scholar 

  • Jolivet C, Angers DA, Chantigny MH, Andreux F, Arrouays D (2006) Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biol Biochem 38:2834–2842

    CAS  Google Scholar 

  • Jones HL, Worrall JJ (1995) Fungal biomass in decayed wood. Mycologia 87:459–466

    Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    PubMed  CAS  Google Scholar 

  • Kelley KR, Stevenson FJ (1996) Organic forms of N in soil. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, The Netherlands, pp 407–427

    Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA et al (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass–a new perspective. Soil Biol Biochem 40:61–73

    CAS  Google Scholar 

  • Kennedy A (2005) Rhizosphere. In: Sylvia D, Fuhrmann J, Hartel P, Zuberer D (eds) Principles and applications of soil microbiology, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ, pp 242–262

    Google Scholar 

  • Kim J-S, Dungan R, Crowley D (2008) Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol Fert Soils 44:1003–1011

    CAS  Google Scholar 

  • Kindler R, Miltner A, Richnow HH, Kästner M (2006) Fate of gram-negative bacterial biomass in soil – Mineralization and contribution to SOM. Soil Biol Biochem 38:2860–2870

    CAS  Google Scholar 

  • Kindler R, Miltner A, Thullner M, Richnow HH, Kästner M (2009) Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem 40:29–37

    CAS  Google Scholar 

  • Knicker H, Lüdemann HD (1995) N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation. Org Geochem 23:329–341

    CAS  Google Scholar 

  • Knicker H, Almendros G, González-Vila FJ, Martin F, Lüdemann HD (1996) 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol Biochem 28:1053–1060

    CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40:425–433

    CAS  Google Scholar 

  • Kubartová A, Moukoumi J, Béguiristain T, Ranger J, Berthelin J (2007) Microbial diversity during cellulose decomposition in different forest stands: I. Microbial communities and environmental conditions. Microb Ecol 54:393–405

    PubMed  Google Scholar 

  • Lattaud C, Locati S, Mora P, Rouland C, Lavelle P (1998) The diversity of digestive systems in tropical geophagous earthworms. Appl Soil Ecol 9:189–195

    Google Scholar 

  • Lattaud C, Mora P, MH G, Locati S, Rouland C (1999) Enzymatic digestive capabilities in geophagous earthworms – origin and activities of cellulolytic enzymes. Pedobiologia 43:842–850

    CAS  Google Scholar 

  • Lavelle P, Gilot C (1994) Priming effect of macroorganisms on soil microflora: a key process of soil function? In: Ritz K, Dighton J, Giller K (eds) Beyond the biomass. Wiley, Chichester, UK, pp 173–180

    Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Google Scholar 

  • Liang C, Fujinuma R, Wei L, Balser TC (2007) Tree species-specific effects on soil microbial residues in an upper Michigan old-growth forest system. Forestry 80:65–72

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    PubMed  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    CAS  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    PubMed  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    PubMed  CAS  Google Scholar 

  • Marinissen J, Hillenaar S (1997) Earthworm-induced distribution of organic matter in macroaggregates from differently managed arable fields. Soil Biol Biochem 29:391–395

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    CAS  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    CAS  Google Scholar 

  • McGroddy ME, Silver WL, De Oliveira Jr RC (2004) The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest. Ecosystems 7:172–179

    CAS  Google Scholar 

  • McGuire AD, Joyce LA, Kicklighter DW, Melillo JM, Esser G, Vorosmarty CJ (1993) Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a North American comparison between two global models. Climatic Change 24:287–310

    CAS  Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol Biochem 32:1671–1681

    CAS  Google Scholar 

  • McNeill A, Unkovich M (2007) The nitrogen cycle in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, Germany, pp 37–64

    Google Scholar 

  • Mead DJ, Preston CM (1994) Distribution and retranslocation of 15N in lodgepole pine over eight growing seasons. Tree Physiol 14:389–402

    PubMed  CAS  Google Scholar 

  • Mead DJ, Chang SX, Preston CM (2008) Recovery of 15N-urea 10 years after application to a Douglas-fir pole stand in coastal British Columbia. For Ecol Manage 256:694–701

    Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    CAS  Google Scholar 

  • Michel K, Matzner E (2002) Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biol Biochem 34:1807–1813

    CAS  Google Scholar 

  • Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorover J et al (2009) Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim Cosmochim Acta 73:2034–2060

    CAS  Google Scholar 

  • Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Google Scholar 

  • Mummey D, Matthias C, Six J (2006) Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biol Biochem 38:1608–1614

    CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    PubMed  CAS  Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 72:1–34

    CAS  Google Scholar 

  • Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC et al (2008) The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol 10:3093–3105

    PubMed  CAS  Google Scholar 

  • Neumann G (2007) Root exudates and nutrient cycling. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, Germany, pp 123–157

    Google Scholar 

  • Nierop KGJ (1998) Origin of aliphatic compounds in a forest soil. Org Geochem 29:1009–1016

    CAS  Google Scholar 

  • Noguez A, Escalante A, Forney LJ, Nava-Medoza M, Rosas I, Souza V et al (2008) Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs. Biogeochemistry 89:209–220

    CAS  Google Scholar 

  • Nömmik H, Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy Society of America, Madison, WI, pp 123–161

    Google Scholar 

  • Nunan N, Wu K, Young I, Crawford I, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    PubMed  CAS  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745–1753

    Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    PubMed  Google Scholar 

  • Otto A, Shunthirasingham C, Simpson MJ (2005) A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org Geochem 36:425–448

    CAS  Google Scholar 

  • Parton W, Schimel D, Cole C, Ojima D (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Sci Soc Am J 51:1173–1179

    CAS  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    PubMed  CAS  Google Scholar 

  • Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008a) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113

    CAS  Google Scholar 

  • Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008b) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biol Biochem 40:2434–2440

    CAS  Google Scholar 

  • Plassart P, Akpa Vinceslas M, Gangneux C, Mercier A, Barray S, Laval K (2008) Molecular and functional responses of soil microbial communities under grassland restoration. Agr Ecosys Environ 127:286–293

    CAS  Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Powell J, Klironomos J (2007) The ecology of plant-microbial mutualisms. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Amsterdam, The Netherlands, pp 257–282

    Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168–169:83–88

    Google Scholar 

  • Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170

    PubMed  CAS  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Rillig MC, Caldwell BA, Wösten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    CAS  Google Scholar 

  • Robinson C, Dighton J, Frankland J, Coward P (1993) Nutrient and carbon dioxide release by interacting species of straw-decomposing fungi. Plant Soil 151:139–142

    CAS  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    CAS  Google Scholar 

  • Sampedro L, Dominguez J (2008) Stable isotope natural abundance (d13C and d15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Appl Soil Ecol 38:91–99

    Google Scholar 

  • Sampedro L, Whalon J (2007) Changes in fatty acid profiles through the digestive tract of the earthworm Lumbricus terrestris L. Appl Soil Ecol 35:226–236

    Google Scholar 

  • Schimel JP, Gulledge J (1998) Microbial community structure and global trace gases. Glob Change Biol 4:745–758

    Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    CAS  Google Scholar 

  • Schulze E-D, Mooney HA (1993) Biodiversity and ecosystem function. Springer, Berlin, Germany

    Google Scholar 

  • Schutter M, Dick R (2002) Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci Soc Am J 66:142–153

    CAS  Google Scholar 

  • Schwartz E, Adair KL, Schuur EA (2007) Bacterial community structure correlates with decomposition parameters along a Hawaiian precipitation gradient. Soil Biol Biochem 39:2164–2167

    CAS  Google Scholar 

  • Scow KM (1997) Interrelationships between soil microbial communities and carbon flow in agroecosystems. In: Jackson LE (ed) Ecology in agriculture. Academic Press, New York, pp 367–416

    Google Scholar 

  • Setälä H, McLean M (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    PubMed  Google Scholar 

  • Shaw C, Pawluk S (1986) Faecal microbiology of Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia 29:377–389

    Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007a) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    PubMed  CAS  Google Scholar 

  • Simpson AJ, Song G, Smith E, Lam B, Novotny EH, Hayes MHB (2007b) Unraveling the structural components of soil humin by use of solution-state Nuclear Magnetic Resonance spectroscopy. Environ Sci Technol 41:876–883

    PubMed  CAS  Google Scholar 

  • Simpson MJ, Otto A, Feng X (2008) Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci Soc Am J 72:268–276

    CAS  Google Scholar 

  • Singh G, Mukerji K (2006) Root exudates as determinant of rhizospheric microbial diversity. In: Mukerji K, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, Germany, pp 39–53

    Google Scholar 

  • Six J, Elliott E, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    CAS  Google Scholar 

  • Six J, Conant R, Paul EA, Paustian K (2002) Stabilization mechanisms for soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31

    Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    CAS  Google Scholar 

  • Sjöberg G, Knicker H, Nilsson SI, Berggren D (2004) Impact of long-term N fertilization on the structural composition of spruce litter and mor humus. Soil Biol Biochem 36:609–618

    Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag J-M, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 357–393

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Google Scholar 

  • Stevenson F (1985) Geochemistry of soil humic substances. In: Aiken G, McKnight D, Wershaw R, MacCarthy P (eds) Humic substances in soil, sediment, and water. Wiley, New York, pp 13–52

    Google Scholar 

  • Stevenson F (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • Sylvia D (2005) Mycorrhizal symbioses. In: Sylvia D, Fuhrmann J, Hartel P, Zuberer D (eds) Principles and applications of soil microbiology, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ, pp 263–282

    Google Scholar 

  • Timonen S, Marschner P (2006) Mycorrhizosphere concept. In: Mukerji K, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, Germany, pp 155–172

    Google Scholar 

  • Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625

    Google Scholar 

  • Tiwari S, Mishra R (1993) Fungal abundance and diversity in earthworm casts and in uningested soil. Biol Fert Soils 16:131–134

    Google Scholar 

  • Toljander YK, Lindahl BD, Holmer L, Högberg NOS (2006) Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148:625–631

    PubMed  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    PubMed  Google Scholar 

  • Treton C, Chauvet E, Charcosset JY (2004) Competitive interaction between two aquatic hyphomycete species and increase in leaf litter breakdown. Microb Ecol 48:439–446

    PubMed  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E et al (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems – linking the aboveground and belowground components. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wardle DA (2005) How plant communities influence decomposer communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, UK, pp 119–138

    Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    PubMed  CAS  Google Scholar 

  • Watkinson SC, Davison EM, Bramah J (1981) The effect of nitrogen availability on growth and cellulolysis by Serpula lacrimans. New Phytol 89:295–305

    CAS  Google Scholar 

  • Webster EA, Chudek JA, Hopkins DW (2000) Carbon transformations during decomposition of different components of plant leaves in soil. Soil Biol Biochem 32:301–314

    CAS  Google Scholar 

  • Wells JM, Boddy L, Donnelly DP (1998) Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytol 138:607–617

    CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T et al (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169

    PubMed  CAS  Google Scholar 

  • White P, Rice C (2009) Tillage effects on microbial and carbon dynamics during plant residue decomposition. Soil Sci Soc Am J 73:138–145

    CAS  Google Scholar 

  • Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540

    Google Scholar 

  • Wolf D, Wagner G (2005) Carbon transformations and soil organic matter formation. In: Sylvia D, Fuhrmann J, Hartel P, Zuberer D (eds) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJ, pp 285–332

    Google Scholar 

  • Wolter C, Scheu S (1999) Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia 43:891–900

    Google Scholar 

  • Zech W, Kögel-Knabner I (1994) Patterns and regulation of organic matter transformation in soils: litter decomposition and humification. In: Schulze E-D (ed) Flux control in biological systems: from enzymes to populations and ecosystems. Academic Press, San Diego, CA, pp 35–73

    Google Scholar 

  • Zhang X, He H, Amelung W (2007) A GC/MS method for the assessment of 15N and 13C incorporation into soil amino acid enantiomers. Soil Biol Biochem 39:2785–2796

    CAS  Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Condron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Condron, L., Stark, C., O’Callaghan, M., Clinton, P., Huang, Z. (2010). The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_4

Download citation

Publish with us

Policies and ethics