Skip to main content

The Origin of Eukarya as a Stress Response of Two-Membrane-Bounded Sexual Pre-karyote to an Aggressive Alphaproteobacterial Periplasmic Infection

  • Chapter
  • First Online:
Symbioses and Stress

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 17))

  • 1669 Accesses

Abstract

The organisms were classified as either prokaryotes or eukaryotes in pre-genomic era. While eukaryotes possess the nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria, and are sexual, none of these features is present in prokaryotes. The view of prokaryote–eukaryote dichotomy has dramatically changed, when the rRNA sequence comparisons of Woese and Fox (1977) revealed that two kinds of prokaryotes exist: Eubacteria and Archaebacteria. Woese et al. (1990) later suggested that three domains of life exist: Bacteria (Eubacteria), Archaea (Archaebacteria), and Eukarya (eukaryotes). Moreover, it has been proposed that Archaea and Eukarya are more closely related to each other than both these domains are related to Bacteria (Woese et al., 1990). The historical view that eukaryotes evolved from bacteria now seems to be oversimplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami, L., Fivaz, M., Glauser, P.-E, Parton, R.G. and van der Goot, F.G. (1998) A pore-forming toxin interacts with a GPI-anchred protein and causes vacuolation of the endoplasmic reticulum. J. Cell Biol. 140: 525–540.

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman, V., Koonin, E.V. and Aravind, L. (2002) Comparative genomics and evolution of proteins Involved in RNA Metabolism. Nucleic Acids Res. 30: 1427–1464.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, S.G.E., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C.M., Podowski, R.M., Naslund, A.K., Eriksson, A.S., Winkler, H.H. and Kurland, C.G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, S.G.E., Karlberg, O., Canback, B. and Kurland, C.G. (2003) On the origin of mitochondria: a genomics perspective. Phil. Trans. R. Soc. London B 358: 165–179.

    Article  CAS  Google Scholar 

  • Aravind, L. and Koonin, E.V. (2000) Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Genome Res. 10: 1172–1184.

    Article  PubMed  CAS  Google Scholar 

  • Baluška, F., Volkmann, D. and Barlow, P.W. (2004a) Eukaryotic cells and their cell bodies: cell theory revised. Ann. Botany 94: 9–32.

    Article  CAS  Google Scholar 

  • Baluška, F., Volkmann, D. and Barlow, P.W. (2004b) Cell bodies in a cage. Nature 428: 371.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H., Byers, G.S. and Michod, R.E. (1981) Evolution of sexual reproduction: importance of DNA repair, complementation and variation. Am. Nat. 117: 537–549.

    Article  CAS  Google Scholar 

  • Blobel, G. (1980) Intracellular topogenesis. Proc. Natl. Acad. Sci. U.S.A. 77: 1496–1500.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (1987) The origin of eukaryotic and archaebacterial cells. Ann. New York Acad. Sci. 503: 17–54.

    Article  CAS  Google Scholar 

  • Cavalier-Smith, T. (1991a) The evolution of prokaryotic and eukaryotic cells, In: G.E. Bittar (ed.), Fundamentals of Medical Cell Biology I. JAI Press, Greenwich, CN, pp. 217–272.

    Google Scholar 

  • Cavalier-Smith, T. (1991b) Intron phylogeny: a new hypothesis. Trends Genet. 7: 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5: 174–182.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2001) Obcells as protoorganisms: membrane heredity, lithophosphorylation, and the origins of genetic code, the first cells, and photosynthesis. J. Mol. Evol. 53: 555–595.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2002a) Origin of the machinery of recombination and sex. Heredity 88: 125–141.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2002b) The Neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52: 7–76.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2002c) The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52: 297–354.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2006) Rooting the tree of life by transition analyses. Biol. Direct 1: 19.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2009) Predation and eukaryote cell origins. Int. J. Biochem. Cell. Biol. 41: 307–322.

    Article  PubMed  CAS  Google Scholar 

  • Cox, C.J., Foster, P.G., Hirt, R.P., Harris, S.R. and Embley, T.M. (2008) The archaeabacterial origin of eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 105: 20356–20361.

    Article  PubMed  CAS  Google Scholar 

  • Dagan, T. and Martin, W. (2007) Testing hypothesis without considering prediction. BioEssays 29: 500–503.

    Article  PubMed  Google Scholar 

  • Davidov, Y. and Jurkevitch, E. (2007) Comments on Poole and Penny’s essay “Evaluating hypotheses for the origin of eukaryotes.”, BioEssays 29:74–84. BioEssays 29: 615–616.

    Article  PubMed  Google Scholar 

  • Davidov, Y., Huchon, D., Koval, S.F. and Jurkevitch, E. (2006) A new α-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ. Microbiol. 8: 2179–2188.

    Article  PubMed  CAS  Google Scholar 

  • Dawkins, R. (1976) The Selfish Gene. Oxford University Press, Oxford.

    Google Scholar 

  • de Duve, C. (2007) Origin of eukaryotes: a reappraisal. Nature Rev. Genet. 8: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B.T., Sali, A. and Rout, M.P. (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2: e380.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F. (2000) Searching for the common ancestor. Res. Microbiol. 151: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F. (1991) The origin of introns. Curr. Biol. 1: 145–146.

    Article  PubMed  CAS  Google Scholar 

  • Edgell, D.R. and Doolittle, W.F. (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89: 995–998.

    Article  PubMed  CAS  Google Scholar 

  • Filée, J., Forterre, P., Sen-Lin, T. and Laurent, J. (2003) Evolution of DNA-polymerase families: evidence for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54: 763–773.

    Google Scholar 

  • Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Forterre, P. (1999) Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Forterre, P. (2002) The origin of DNA genomes and DNA replication proteins. Curr. Op. Microbiol. 5: 525–532.

    Article  CAS  Google Scholar 

  • Forterre, P. (2005) The two ages of the RNA world, and transition to the DNA world: a story of viruses and cells. Biochimie 87: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Forterre, P. (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. U.S.A. 103: 3669–3674.

    Article  PubMed  CAS  Google Scholar 

  • Frade, J.M. and Michaelidis, T.M. (1997) Origin of eukaryotic programmed cell death: a consequence of aerobic metabolism? BioEssays 19: 827–832.

    Article  PubMed  CAS  Google Scholar 

  • Glansdorff, N., Xu, Y. and Labedan, B. (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct 3: 29.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.W., Burger, G. and Lang, B.F. (1999) Mitochondrial evolution. Nature 283: 1476–1481.

    CAS  Google Scholar 

  • Griffiths, G. (2007) Cell evolution and the problem of membrane topology. Nat. Rev. Mol. Cell Biol. 8: 1018–1024.

    Article  PubMed  CAS  Google Scholar 

  • Haber, J.E. (1999) DNA recombination: the replication connection. Trends Biochem. Sci. 24: 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Haber, J.E. (2000) Recombination: a frank view of changes and vice versa. Curr. Op. Cell Biol. 12: 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, H. and Fedorov, A. (2002) The origin of the eukaryotic cell: a genomic investigation. Proc. Natl. Acad. Sci. U.S.A. 99: 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, H., Favaretto, P. and Smith, T.F. (2006) The archaeal origins of the eukaryotic translational system. Archaea 2: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Hentze, M.W. (2001) Believe it or not – translation in the nucleus. Science 293: 1058–1059.

    Article  PubMed  CAS  Google Scholar 

  • Horiike, T., Hamada, K., Kanaya, S. and Shinozawa, T. (2001) Origin of nucleic acid cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat. Cell Biol. 3: 210–214.

    Article  PubMed  CAS  Google Scholar 

  • Horiike, T., Hamada, K., Miyata, D. and Shinozawa, T. (2004) The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-proteobacteria by phylogenetic tree based on gene content. J. Mol. Evol. 59: 606–619.

    Article  PubMed  CAS  Google Scholar 

  • Iborra, F.J., Jackson, D.A. and Cook, P.R. (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293: 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  • Isenbarger, T.A., Carr, C.E., Johnson, S.S., Finney, M., Zuber, M.T. and Ruvkun, G. (2008) The most conserved genome segments for life detection on Earth and other planets. Orig. Life Evol. Biosph. 38: 517–533.

    Article  PubMed  CAS  Google Scholar 

  • Jékely, G. (2003) Small GTPases and the evolution of the eukaryotic cell. BioEssays 25: 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Jékely, G. (2006) Did the last common ancestor have a biological membrane? Biol. Direct 1: 35.

    Article  PubMed  CAS  Google Scholar 

  • Jékely, G. (2007a) Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol. Direct 2: 3.

    Article  PubMed  CAS  Google Scholar 

  • Jékely, G. (2007b) Origin of eukaryotic endomembranes – a critical evaluation of different model scenarios. Adv. Exp. Med. Biol. 607: 38–51.

    Article  PubMed  Google Scholar 

  • Jékely, G. (2008) Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol. Direct 3: 31.

    Article  PubMed  CAS  Google Scholar 

  • Kandler, O. (1994a) The early diversification of life, In: S. Bengtson (ed.), Nobel Symposium No 84. Early Life on Earth. Columbia University Press, New York, pp. 152–160.

    Google Scholar 

  • Kandler, O. (1994b) Cell wall biochemistry in Archaea and its phylogenetic implications. J. Biol. Phys. 20: 165–169.

    Article  CAS  Google Scholar 

  • Kandler, O. (1998) The early diversification of life and the origin of the three domains: a proposal, In: J. Wiegel and M.W.W. Adams (eds.), Thermophiles: the Keys to Molecular Evolution and the Origin of Life. Taylor & Francis, London, pp. 19–28.

    Google Scholar 

  • Koga, Y., Kyuragi, T., Nishihara, M. and Sone, N. (1998) Did archaeal and bacterial cells arise independently from non-cellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46: 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Koonin, E.V. (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct 1: 22.

    Article  PubMed  CAS  Google Scholar 

  • Krylov, D.M., Nasmyth, K. and Koonin, E.V. (2003) Evolution of eukaryotic cell cycle regulation: stepwise addition of regulatory kinases and late advent of CDKs. Curr. Biol. 13: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, C.G., Canback, B. and Berg, O.G. (2003) Horizontal gene transfer: a critical view. Proc. Natl. Acad. Sci. U.S.A. 100: 9658–9662.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, C.G., Collins, L.J. and Penny, D. (2006) Genomics and the irreducible nature of eukaryote cells. Science 312: 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov, A. (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63: 751–813.

    PubMed  CAS  Google Scholar 

  • Lang, D.F., Gray, M.W. and Burger, G. (1999) Mitochondrial genome evolution and the origin of eukaryotes. Ann. Rev. Gen. 33: 351–397.

    Article  CAS  Google Scholar 

  • Leipe, D.D., Aravind, L. and Koonin, E.V. (1999) Did DNA replication evolve twice independently? Nucleic Acids Res. 27: 3389–3401.

    Article  PubMed  CAS  Google Scholar 

  • López-García, P. and Moreira, D. (2001) The syntrophy hypothesis for the origin of eukaryotes, In: J. Seckbach (ed.), Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 131–146.

    Google Scholar 

  • López-García, P. and Moreira, D. (2006) Selective forces for the origin of the eukaryotic nucleus. BioEssays 28: 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Makarova, K.S., Wolf, Y.I., Kekhedov, S.L., Mirkin, B.G. and Koonin, E.V. (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucl. Acids. Res. 33: 4626–4638.

    Article  PubMed  CAS  Google Scholar 

  • Mans, B.J., Anantharaman, V., Aravind, L. and Koonin, E.V. (2004). Comparative genomics, ­evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3: 1612–1637.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L., Dolan, M.F. and Guerrero, R. (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Natl. Acad. Sci. U.S.A. 97: 6954–6959.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L., Chapman, M., Guerrero, R. and Hall, J. (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc. Natl. Acad. Sci. U.S.A. 103: 13080–13085.

    Article  CAS  Google Scholar 

  • Martin, W. (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Op. Microbiol. 8, 630–637.

    Article  CAS  Google Scholar 

  • Martin, W. and Koonin, E.V. (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W. and Müller, M. (1998) The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Sci. U.S.A. 99: 12246–12251.

    Article  CAS  Google Scholar 

  • Maynard Smith, J. and Szathmáry, E. (1995) The Major Evolutionary Transitions. W. H. Freeman, Oxford.

    Google Scholar 

  • Moreira, D. and López-García, P. (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47: 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Nather, D.J. and Rachel, R. (2004) The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition. Biochem. Soc. Trans. 32: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Nosek, J., Kosa, P. and Tomáška,ĽL. (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. BioEssays 28: 182–190.

    Article  PubMed  CAS  Google Scholar 

  • Otto, S.P. and Lenormand, T. (2002) Resolving the paradox of sex and recombination. Nature Rev. Genet. 3: 252–261.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, T. (2001) Is the nucleus in need of translation? Trends Cell Biol. 11: 395–397.

    Article  PubMed  CAS  Google Scholar 

  • Peretó, J., López-García, P. and Moreira, D. (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Penny, D. and Poole, A. (1999) The nature of the last universal common ancestor. Curr. Op. Gen. Dev. 9: 672–677.

    Article  CAS  Google Scholar 

  • Pisani, D., Cotton, J.A. and McInerney, J.O. (2007) Supertrees disentangle the chimeric origin of eukaryotic genomes. Mol. Biol. Evol. 24: 1752–1760.

    Article  PubMed  CAS  Google Scholar 

  • Politz, J.C., Yarovoi, S., Kilroy, S.M., Gowda, K., Zwieb, C. and Pederson, T. (2000) Signal recognition particle components in the nucleolus. Proc. Natl. Acad. Sci. U.S.A. 97: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Poole, A.M. (2006) Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol. Direct 1: 36.

    Article  PubMed  CAS  Google Scholar 

  • Poole, A.M. and Penny, D. (2006) Evaluating hypotheses for the origin of eukaryotes. BioEssays 29: 74–84.

    Article  Google Scholar 

  • Poole, A.M., Jeffares, D. and Penny, D. (1999) Prokaryotes, the new kids on the block. Bioessays 21: 880–889.

    Article  PubMed  CAS  Google Scholar 

  • Rachel, R., Wyschkony, I., Riehl, S. and Huber, H. (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Rice, W.R. (2002) Experimental tests of the adaptive significance of sexual recombination. Nature Rev. Genet. 3: 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, M.C. and Lake, J.A. (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–155.

    Article  PubMed  CAS  Google Scholar 

  • Saier, M.H. Jr. (1994) Protein uptake into E. coli during Bdellovibrio infection. A process of reverse secretion? FEBS Lett. 337: 14–17.

    Article  PubMed  CAS  Google Scholar 

  • Santos, M., Zintzaras, E. and Szathmáry, E. (2003) Origin of sex revisited. Orig. Life Evol. Biosph. 33: 405–432.

    Article  PubMed  Google Scholar 

  • Saruhashi, S., Hamada, K., Miyata, D., Horiike, T. and Shinozawa, T. (2008) Comprehensive analysis of the origin of eukaryotic genomes. Genes Genet. Syst. 83: 285–291.

    Article  PubMed  Google Scholar 

  • Shinozawa, T., Hoorike, T. and Hamada, K. (2001) Nucleus symbiosis hypothesis: formation of eukaryotic cell nuclei by the symbiosis of Archaea in Bacteria, In: J. Seckbach (ed.) Symbiosis: Mechanisms and Models Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 229–235.

    Google Scholar 

  • Staub, E., Fiziev, P., Rosenthal, A. and Hinzmann, B. (2004) Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. BioEssays 26: 567–581.

    Article  PubMed  CAS  Google Scholar 

  • Sterrer, W. (2002) On the origin of sex as vaccination. J. Theor. Biol. 216: 387–396.

    Article  PubMed  Google Scholar 

  • Vesteg, M. and Krajčovič, J. (2007) On the origin of meiosis and sex. Riv. Biol. 100: 147–162.

    PubMed  Google Scholar 

  • Vesteg, M. and Krajčovič, J. (2008a) Origin of eukaryotic cells as a symbiosis of parasitic α-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Comm. Integr. Biol. 1: 104–113.

    Article  CAS  Google Scholar 

  • Vesteg, M. and Krajčovič, J. (2008b) On the origin of eukaryotic cytoskeleton. Riv. Biol. 101: 109–118.

    PubMed  Google Scholar 

  • Vesteg, M., Krajčovič, J. and Ebringer, L. (2006) On the origin of eukaryotes and their endomembranes. Riv. Biol. 99: 499–519.

    PubMed  Google Scholar 

  • von Dohlen, C.D., Kohler, S., Alsop, S.T. and McManus, W.R. (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Warren, G. and Wickner, W. (1996) Organelle inheritance. Cell 84: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Wächtershäuser, G. (1988) Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52: 452–484.

    PubMed  Google Scholar 

  • Wächtershäuser, G. (1992) Groundworks for an evolutionary biochemistry – the iron-sulfur world. Prog. Biophys. Mol. Biol. 58: 85–201.

    Article  PubMed  Google Scholar 

  • Wächtershäuser, G. (2003) From pre-cells to Eukarya – a tale of two lipids. Mol. Microbiol. 47: 13–22.

    Article  PubMed  Google Scholar 

  • Wächtershäuser, G. (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil. Trans. R. Soc. B 361: 1787–1808.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, L.W. (1986) Prokaryotic endosymbionts in chloroplast stroma of the dinoflagellate Woloszynskia pascheri. Protoplasma 135: 71–79.

    Article  Google Scholar 

  • Woese, C.R. (1983) The primary lines of descent and the universal ancestor, In: D.S. Bendall (ed.), Evolution from Molecules to Men. Cambridge University Press, Cambridge, pp. 209–233.

    Google Scholar 

  • Woese, C.R. (1998) The universal ancestor. Proc. Natl. Acad. Sci. U.S.A. 95: 6854–6859.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (2000) Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. USA 97: 8392–8396.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (2002) On the evolution of cells. Proc. Natl. Acad. Sci. USA 99: 8742–8747.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088–5090.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., Kandler, O. and Wheelis, M.L. (1990) Toward a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J.T.-Z., Chen, J., Mat, W.-K., Ng, S.-K. and Xue, H. (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403: 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Wujek, D.E. (1979) Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Trans. Am. Micros. Soc. 98: 143–145.

    Article  Google Scholar 

  • Yutin, N., Makarova, K.S., Mekhedov, S.L., Wolf, Y.I. and Koonin, E.V. (2008) The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25: 1619–1630.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Education of the Slovak Republic (grants VEGA 1/3249/06, and 1/0416/09 to Juraj Krajčovič) and Comenius University (grants UK/98/2006, UK/144/2007, and UK/208/2009 to Matej Vestej) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Vesteg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vesteg, M., Krajčovič, J. (2010). The Origin of Eukarya as a Stress Response of Two-Membrane-Bounded Sexual Pre-karyote to an Aggressive Alphaproteobacterial Periplasmic Infection. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_4

Download citation

Publish with us

Policies and ethics