Skip to main content

Problems and Progress in Understanding the Origins of Mitochondria and Plastids

  • Chapter
  • First Online:
Symbioses and Stress

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 17))

Abstract

The origins and evolution of mitochondria and plastids is a topic that has intrigued biologists for well over a century. A wealth of biochemical, cell biological, and, most recently, molecular sequence data has been brought to bear on this important issue, and it has now been definitively shown that these organelles are of prokaryotic ancestry. Nevertheless, many important questions about mitochondrial and plastid evolution remain unanswered, particularly those pertaining to the earliest events in organelle biogenesis and the environmental conditions in which they evolved. This chapter provides an overview of past and present models for the evolutionary origins of mitochondria and plastids, emphasizing recent advances made possible by taxonomically broad comparative genomic analyses and detailed biochemical investigations of diverse protist taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, S.M., Simpson, A.G., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, O., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W. and Taylor, M.F. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukar. Microbiol. 52: 399–451.

    Article  Google Scholar 

  • Andersson, S.G.E. and Kurland, C.G. (1999) Origins of mitochondria and hydrogenosomes. Curr. Op. Microbiol. 2: 535–541.

    Article  CAS  Google Scholar 

  • Andersson, S.G., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C., Podowski, R.M., Naslund, A.K., Eriksson, A.S., Winkler, H.H., and Kurland, C.G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Archibald, J.M. (2007) Nucleomorph genomes: structure, function, origin and evolution. BioEssays 29: 392–402.

    Article  PubMed  CAS  Google Scholar 

  • Archibald, J.M. (2009) The origin and spread of eukaryotic photosynthesis – evolving views in light of genomics. Bot. Marina 52: 95–103.

    Article  CAS  Google Scholar 

  • Archibald, J.M. and Keeling, P.J. (2002) Recycled plastids: a green movement in eukaryotic evolution. Trends Genet. 18: 577–584.

    Article  PubMed  CAS  Google Scholar 

  • Barberà, M.J., Ruiz-Trillo, I., Leigh, J., Hug, L.A. and Roger, A.J. (2007) The diversity of mitochondrion-related organelles amongst eukaryotic microbes, In: W.F. Martin and M. Müller (eds.), Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, pp. 239–275.

    Chapter  Google Scholar 

  • Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. and Weber, A.P. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol. 137: 460–474.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, D. and Melkonian, M. (1995) The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.

    Article  CAS  Google Scholar 

  • Bhattacharya, D., Archibald, J.M., Weber, A.P. and Reyes-Prieto, A. (2007). How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays 29: 1239–1246.

    Article  PubMed  CAS  Google Scholar 

  • Bonen, L., Cunningham, R.S., Gray, M.W. and Doolittle, W.F. (1977) Wheat mitochondrial 18S ribosomal RNA: evidence for its prokaryotic Nature. Nucleic Acids Res. 4: 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Boxma, B., de Graaf, R.M., van der Staay, G.W., van Alen, T.A., Ricard, G., Gabaldon, T., van Hoek, A.H., Moon-van der Staay, S.Y., Koopman, W.J., van Hellemond, J.J., Tielens, A.G., Friedrich, T., Veenhuis, M., Huynen, M.A. and Hackstein, J.H. (2005). An anaerobic mitochondrion that ­produces hydrogen. Nature 434: 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Brinkman, F.S., Blanchard, J.L., Cherkasov, A., Av-Gay, Y., Brunham, R.C., Fernandez, R.C., Finlay, B.B., Otto, S.P., Ouellette, B.F., Keeling, P.J., Rose, A.M., Hancock, R.E., Jones, S.J. and Greberg, H.. (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res.12: 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, Å., Nikolaev, S.I., Jakobsen, K.S. and Pawlowski, J.. (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 8: e790.

    Article  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K. and Pawlowski, J. (2008) Phylogenomics reveals a new “megagroup” including most photosynthetic eukaryotes. Biol. Lett. 4: 366–369.

    Google Scholar 

  • Cavalier-Smith, T. (1983) Endosymbiotic origin of the mitochondrial envelope, In: W. Schwemmler and H.E.A. Schenk (eds.), Endocytobiology II. de Gruyter, Berlin, pp. 265–279.

    Google Scholar 

  • Cavalier-Smith, T. (1986) The kingdom Chromista: origin and systematics. Progr. Phycol. Res. 4: 309–347.

    Google Scholar 

  • Cavalier-Smith, T. (1987) Eukaryotes with no mitochondria. Nature 326.

    Google Scholar 

  • Cavalier-Smith, T. (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46: 347–366.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2007) The chimaeric origin of mitochondria: photosynthetic cell enslavement, gene-transfer pressure, and compartmentation efficiency, In: W.F. Martin, and M. Müller (eds.) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, pp. 161–199.

    Chapter  Google Scholar 

  • Chesnick, J.M., Hooistra, W.H., Wellbrock, U. and Medlin, L.K. (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J. Eukaryot. Microbiol. 44: 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, R.S., Gray, M.W., Doolittle, W.F. and Bonen, L. (1977) The prokaryotic nature of wheat mitochondrial 18S ribosomal RNA, In: L. Bogorad and J.H. Weil (eds.), Acides nucleiques et synthese des proteines chez les vegetaux. Editions du Centre National de la Recherche Scientifique, Paris, pp. 243–248.

    Google Scholar 

  • Dagan, T., Artzy-Randrup, Y. and Martin, W. (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc. Natl. Acad. Sci. USA 105: 10039–10044.

    Article  PubMed  CAS  Google Scholar 

  • Daugbjerg, N. and Andersen, R.A. (1997) Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. Mol. Biol. Evol. 14: 1242–1251.

    Article  PubMed  CAS  Google Scholar 

  • de Duve, C. (1969). Evolution of the peroxisome. Ann. NY Acad. Sci. USA 168: 369–381.

    Article  CAS  Google Scholar 

  • Dolezal, P., Likic V., Tachezy J. and Lithgow T. (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313: 314–318.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F. 1999. Phylogenetic classification and the universal tree. Science 284: 2124–2129.

    Article  PubMed  CAS  Google Scholar 

  • Dyall, S.D., Yan, W., Delgadillo-Correa, M.G., Lunceford, A., Loo, J.A., Clarke, C.F. and Johnson, P.J. (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431: 1103–1107.

    Article  PubMed  CAS  Google Scholar 

  • Embley, T.M. and Martin, W. (2006) Eukaryotic evolution, changes and challenges. Nature 440: 623–630.

    Article  PubMed  CAS  Google Scholar 

  • Embley, T.M., van der Giezen, M., Horner, D.S., Dyal, P.L., Bell, S. and Foster, P.G. (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55: 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Esser, C., Ahmadinejad, N., Wiegand, C., Rotte, C., Sebastiani, F., Gelius-Dietrich, G., Henze, K., Kretschmann, E., Richly, E., Leister, D., Bryant, D., Steel, M.A., Lockhart, P.J., Penny, D. and Martin, W. (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21: 1643–1660.

    Article  PubMed  CAS  Google Scholar 

  • Fast, N.M., Kissinger, J.C., Roos, D.S. and Keeling, P.J. (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418–426.

    Article  PubMed  CAS  Google Scholar 

  • Fenchel, T. and Finlay, J.J. (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford.

    Google Scholar 

  • Gentle, I., Gabriel K., Beech P., Waller R. and Lithgow T. (2004). The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell. Biol. 164: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. B., Waller, R.F. and McFadden, G.I. (2008) Plastid evolution. Annu. Rev. Plant Biol. 59: 491–517.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.W. (1992) The endosymbiont hypothesis revisted. Int. Rev. Cytol. 141: 233–357.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.W. (1998) Rickettsia, typhus and the mitochondrial connection. Nature 396: 109–110.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.W. and Doolittle, W.F. (1982) Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46: 1–42.

    PubMed  CAS  Google Scholar 

  • Gray, M.W., Burger, G. and Lang, B.F. (1999) Mitochondrial evolution. Science 283: 1476–1481.

    Article  PubMed  CAS  Google Scholar 

  • Gross, J., Meurer J. and Bhattacharya D. (2008) Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol. Biol. 8: 117. doi: 10.1186/1471-2148-8-117.

    Article  PubMed  Google Scholar 

  • Hackett, J.D., Yoon, H.S., Li, S., Reyes-Prieto, A., Rummele, S.E. and Bhattacharya, D. (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol. Biol. Evol. 24: 1702–1713.

    Article  PubMed  CAS  Google Scholar 

  • Hackstein, J.H., Thaden, J., Koopman, W.J.H. and Huynen, M.A. (2007) Hydrogenosomes (and related organelles, either) are not the same, In: W.F. Martin and M. Müller (eds.), Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, pp. 135–159.

    Chapter  Google Scholar 

  • Hibberd, D.J. and Norris, R.E. (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J. Phycol. 20: 310–330.

    Article  Google Scholar 

  • Howe, C.J. (2008) Cellular evolution: what’s in a mitochondrion? Curr. Biol. 18: R429–431.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C.J., Barbrook, A.C., Nisbet, R.E., Lockhart, P.J. and Larkum, A.W. (2008) The origin of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363: 2675–2685.

    Article  PubMed  CAS  Google Scholar 

  • Hrdy, I., Hirt, R.P., Dolezal, P., Bardonova, L., Foster, P.G., Tachezy, J. and Embley, T.M. (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432: 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J. and Gogarten, J.P. (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8: R99.

    Article  PubMed  Google Scholar 

  • Ishida, K. and Green, B.R. (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc. Natl. Acad. Sci. USA 99: 9294–9299.

    Article  PubMed  CAS  Google Scholar 

  • John, P. and Whatley, F.R. (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254: 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.W., Hargraves, P.E. and Sieburth, J.M. (1988) Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919 (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J. Protozool. 35: 618–626.

    Google Scholar 

  • Karlberg, O., Canback, B., Kurland, C.G. and Andersson, S.G. (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17: 170–187.

    Article  PubMed  CAS  Google Scholar 

  • Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., Roger, A.J. and Gray, M.W. (2005) The tree of eukaryotes. Trends. Ecol. Evol. 20: 670–676.

    Article  PubMed  Google Scholar 

  • Lindmark, D.G. and Muller, M. (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248: 7724–7728.

    PubMed  CAS  Google Scholar 

  • Margulis, L. (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven, CT.

    Google Scholar 

  • Martin, W. (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc. Natl. Acad. Sci. USA 100: 8612–8614.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., and Herrmann, R.G. (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 118: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W. and Müller, M. (1998) The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., Brinkmann, H., Savonna, C. and Cerff, R. (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc. Natl. Acad. Sci. U.S.A 90: 8692–8696.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA 99: 12246–12251.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin, I.T., Maruyama, S., Takahara, M., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. and Kuroiwa, T. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, G.I. and van Dooren, G.G. (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr. Biol. 14: R514–516.

    Article  PubMed  CAS  Google Scholar 

  • Medlin, L.K., Cooper, A., Hill, C., Wrieden, S. and Wellbrock, U. (1995) Phylogenetic position of the Chromista plastids based on small subunit rRNA coding regions. Curr. Genet. 28: 560–565.

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky, C. (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25: 593–604.

    Google Scholar 

  • Millar, A.H., Whelan J. and Small I. (2006). Recent surprises in protein targeting to mitochondria and plastids. Curr. Opin. Plant Biol. 9: 610–615.

    Article  PubMed  CAS  Google Scholar 

  • Moreira, D. and Lopez-Garcia, P. (1998) Symbiosis between methanogenic archaea and delta-­proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47: 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Müller, K.M., Oliveira, M.C., Sheath, R.G. and Bhattacharya, D. (2001) Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am. J. Bot. 88: 1390–1400.

    Article  PubMed  Google Scholar 

  • Nowack, E.C.M., Melkonian, M. and Glöckner, G. (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18: 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.D. (2003) The symbiotic birth and spread of plastids: how many times and whodunnit? J. Phycol. 39: 4–11.

    Article  CAS  Google Scholar 

  • Patron, N.J., Rogers, M.B. and Keeling, P.J. (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot. Cell. 3: 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  • Patron, N.J., Inagaki, Y. and Keeling, P.J. (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr. Biol. 17: 887–891.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Brocal, V. and Clark, A.G. (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: Complete sequences, gene content and genome organization. Mol. Biol. Evol. 25: 2475–2482.

    Article  PubMed  CAS  Google Scholar 

  • Philippe, H. and Germot, A. (2000) Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol. 17: 830–834.

    Article  PubMed  CAS  Google Scholar 

  • Poole, A.M. and Penny, D. (2007) Evaluating hypotheses for the origin of eukaryotes. BioEssays 29: 74–84.

    Article  PubMed  Google Scholar 

  • Reyes-Prieto, A., Hackett, J.D., Soares, M.B., Bonaldo, M.F. and Bhattacharya, D. (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16: 2320–2325.

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto, A., Weber, A.P. and Bhattacharya, D. (2007) The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41: 147–168.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., Loffelhardt, W., Bohnert, H.J., Philippe, H. and Lang, B.F. (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15:1325–1330.

    Article  PubMed  CAS  Google Scholar 

  • Roger, A.J. (1999) Reconstructing early events in eukaryotic evolution. Am. Nat. 154: S146–S163.

    Article  PubMed  Google Scholar 

  • Rogers, M.B., Gilson, P.R., Su, V., McFadden, G.I and Keeling, P.J. (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol. Biol. Evol. 24: 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Sagan, L. (1967) On the origin of mitosing cells. J. Theor. Biol. 14: 255–274.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.G., Gawryluk, R.M., Spencer, D.F., Pearlman, R.E., Siu, K.W. and Gray, M.W. (2007) Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J. Mol. Biol. 374: 837–863.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, M.S., Gould, S.B., Lehmann, P., Gruber, A., Przyborski, J.M and Maier, U.G. (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol. Biol. Evol. 24: 918–928.

    Article  PubMed  CAS  Google Scholar 

  • Stanier, R.Y. (1970) Some aspects of the biology of cells and their possible evolutionary significance, In: H.P. Charles and B.D. Knight, (eds.), Organization and Control in Prokaryotic and Eukaryotic Cells: 20th Symposium of the Society for General Microbiology. Cambridge University Press, London, pp. 1–38.

    Google Scholar 

  • Stechmann, A., Hamblin, K., Perez-Brocal, V., Gaston, D., Richmond, G.S, van der Giezen, M., Clark, C.G. and Roger, A.J. (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr. Biol. 18: 580–585.

    Article  PubMed  CAS  Google Scholar 

  • Stiller, J.W. (2007). Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 12: 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Stiller, J.W. and Hall, B.D. (1997) The origin of red algae: implications for plastid evolution. Proc. Natl. Acad. Sci. U.S.A. 94: 4520–4525.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, F., Okabe, Y., Nakada, T., Sekimoto, H., Ito, M., Kataoka, H. and Nozaki, H. (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J. Phycol. 43: 1302–1309.

    Article  CAS  Google Scholar 

  • Theissen, U. and Martin, W. (2006) The difference between organelles and endosymbionts. Curr. Biol. 16: R1016–1017; author reply R1017–1018.

    Article  Google Scholar 

  • Tielens, A.G., Rotte, C., van Hellemond, J.J. and Martin, W. (2002) Mitochondria as we don’t know them. Trends Biochem. Sci. 27: 564–572.

    Article  PubMed  CAS  Google Scholar 

  • Timmis, J.N., Ayliffe, M.A., Huang, C.Y. and Martin, W. (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5: 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Tovar, J. (2007) Mitosomes of parasitic protozoa: biology and evolutionary significance, In: W.F. Martin and M. Muller (eds.), Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, pp. 277–300.

    Chapter  Google Scholar 

  • Tovar, J., Leon-Avila, G., Sanchez, L.B., Sutak, R., Tachezy, J., van der Giezen, M., Hernandez, M., Muller, M. and Lucocq, J.M. (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Villarejo, A., Buren, S., Larsson, S., Dejardin, A., Monne, M., Rudhe, C., Karlsson, J., Jansson, S., Lerouge, P., Rolland, N., von Heijne, G., Grebe, M., Bako, L. and Samuelsson, G. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat. Cell Biol. 7: 1224–1231.

    Article  PubMed  Google Scholar 

  • Waller, R.F. and McFadden, G.I. (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr. Issues Mol. Biol. 7: 57–79.

    PubMed  Google Scholar 

  • Watanabe, M.M., Suda, S., Inouye, I., Sawaguchi, I. and Chihara, M. (1990) Lepidodinium viride gen et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. J. Phycol. 26: 741–751.

    Article  Google Scholar 

  • Weber, A.P., Linka, M. and Bhattacharya, D. (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot. Cell. 5: 609–612.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, J.M., John, P. and Whatley, F.R. (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc. R. Soc. Lond. B. 204: 165–187.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Drs. M. W. Gray and W. F. Doolittle for their ­pioneering work on organelle origins. We thank Drs. M. W. Gray and A. J. Roger for interesting­ discussion and useful comments on an earlier version of this ­chapter. Research on organelle evolution in the Archibald Laboratory is supported by operating grants from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Curtis, B.A., Archibald, J.M. (2010). Problems and Progress in Understanding the Origins of Mitochondria and Plastids. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_3

Download citation

Publish with us

Policies and ethics