Skip to main content

Coral Symbiosis Under Stress

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 17))

Abstract

Coral reefs of the world are in decline as a result of exposure to an increasing number of major stress agents (Wilkinson and Buddemeier, 1994; Hoegh-Guldberg, 1999; Hoegh-Guldberg et al., 2007). Stress causes bleaching and, in many cases, leads to the death of coral colonies and of entire reefs (e.g., Rosenberg and Loya, 2004). Coral reef ecosystems are one of the largest remaining reservoirs of biodiversity and are among the most diverse in the world. The reefs are based on the symbiotic relationship between the coral animal host to endocellular dinoflagellate micro­algae, commonly referred to as zooxanthellae (yellow-brown algae, Brandt, 1883) embedded in their tissues (e.g., Karako et al. 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson, A.J., Mackenzie, F.T. and Lerman, A. (2005) Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. Am. J. Sci. 305: 875–918.

    Article  CAS  Google Scholar 

  • Anthony, K.R.N. and Kerswell, A.P. (2007) Coral mortality following extreme low tides and high solar radiation. Mar. Biol. 151: 1623–1631.

    Article  Google Scholar 

  • Anthony, K.R.N., Connolly, S.R. and Hoegh-Guldberg, O. (2007) Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol. Oceanogr. 52: 716–726.

    Article  Google Scholar 

  • Baker, A.C. (2001) Reef corals bleach to survive change. Nature 411: 765–766.

    Article  PubMed  CAS  Google Scholar 

  • Baker, A.C. (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34: 661–689.

    Article  Google Scholar 

  • Baker, A.C. and Romanski, A.M. (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar. Ecol. Prog. Ser. 335: 237–242.

    Article  Google Scholar 

  • Baker, C., Starger, C.J., McClanahan, T.R. and Glynn, P.W. (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430: 741.

    Article  PubMed  CAS  Google Scholar 

  • Barton, A.D. and Casey, K.S. (2005) Climatological context for large-scale coral bleaching. Coral Reefs 24: 536–554.

    Article  Google Scholar 

  • Bellwood, D.R., Hughes, T.P., Folke, C. and Nystrom, M. (2004) Confronting the coral reef crisis. Nature 429: 827–833.

    Article  PubMed  CAS  Google Scholar 

  • Berkelmans, R. and van Oppen, M.J.H. (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. R. Soc. B, Biol. Sci. 273: 2305–2312.

    Article  Google Scholar 

  • Bhagooli, R. and Hidaka, M. (2004a) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp. Biochem. Physiol. A, Mol. Integr. Physiol. 137: 547–555.

    Article  CAS  Google Scholar 

  • Bhagooli, R. and Hidaka, M. (2004b) Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Mar. Biol. 145: 329–337.

    Article  CAS  Google Scholar 

  • Black, N., Voellmy, R. and Szmant, Am. (1995) Heat-shock protein induction in Montastraea faveolata and Aiptasia pallida exposed to elevated temperatures. Biol. Bull. 188: 234–240.

    Article  CAS  Google Scholar 

  • Box, S.J. and Mumby, P.J. (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342: 139–149.

    Article  Google Scholar 

  • Brandt, K. (1883) Über die morphologische und physiologische bedeutung des chlorophylls bei Tieren. Mitt. Zool. Stat. Neapel 4: 191.

    Google Scholar 

  • Brown, B.E., Dunne, R.P., Ambarsari, I., Le Tissier, M.D.A and Satapoomin, U. (1999). Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar. Ecol. Prog. Ser. 191: 53–69.

    Article  Google Scholar 

  • Bruno, J.F. and Selig, E.R. (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8): e711.

    Article  PubMed  Google Scholar 

  • Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., Sweatman, H. and Melendy, A.M. (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5(6): e124.

    Article  PubMed  CAS  Google Scholar 

  • Buddemeier, R.W. and Fautin, D.G. (1993) Coral bleaching as an adaptive mechanism – a testable hypothesis. Bioscience 43: 320–326.

    Article  Google Scholar 

  • Buddemeier, R.W., Kleypas, J.A. and Aronson, R.B. (2004) Coral Reefs and Global Climate Change: Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems. Report prepared for the Pew Center for Global Climate Change, Arlington, VA.

    Google Scholar 

  • Carpenter, K.E., Abrar, M., Aeby, G., Aronson, R.B., Banks, S., Bruckner, A., Chiriboga, A., Cortés, J., Delbeek, J.C., DeVantier, L., Edgar G.J., Edwards, A.J., Fenner, D., Guzmán, H.M., Hoeksema, B.W., Hodgson, G., Johan, O., Licuanan, W.Y., Livingstone, S.R., Lovell, E.R., Moore, J.A., Obura, D.O., Ochavillo, D., Polidoro, B.A., Precht, W.F., Quibilan, M.C., Reboton, C., Richards, Z.T., Rogers, A.D., Sanciangco, J., Sheppard, A., Sheppard, C., Smith, J., Stuart, S., Turak, E., Veron, J.E.N., Wallace, C., Weil, E., Wood. E. (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321: 560–563.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.A., Lam, K.K., Nakano, Y. and Tsai, W.S. (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia : Faviidae) in subtropical non-reefal coral communities. Zool. Stud. 42: 540–550.

    Google Scholar 

  • Coles, S. L. and Jokiel, P.L. (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montiporu verrucosa. Mar. Biol. 49: 187–195.

    Article  Google Scholar 

  • Coles, S.L. and Brown, B.E. (2003) Coral bleaching – capacity for acclimatization and adaptation. Adv. Mar. Biol. 46: 183–223.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, T.F., De’ath, G., Fabricius, K.E. and Lough, J.M. (2008) Declining coral calcification on the Great Barrier Reef. Global Change Biol.14: 529–538; doi: 10.1111/j.1365-2486.2007.01520.

    Article  Google Scholar 

  • Davy, S.K., Burchett, S.G., Dale, A.L., Davies, P., Davy, J.E., Muncke, C., Hoegh-Guldberg, O. and Wilson, W.H. (2006) Viruses: agents of coral disease? Dis. Aquat. Org. 69: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Day, T., Nagel, L., Van Oppen, M.J.H. and Caley, M.J. (2008) Factors affecting the evolution of bleaching resistance in corals. Am. Nat. 171: 72–88.

    Article  Google Scholar 

  • Done, T.J. (1999) Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. Am. Zool. 39: 66–79.

    Google Scholar 

  • Douglas, A.E. (2003) Coral bleaching – how and why? Mar. Pollut. Bull. 46: 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Dove, S. (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272: 99–116.

    Article  Google Scholar 

  • Dove, S., Ortiz, J.C., Enriquez, S., Fine, M., Fisher, P., Iglesias-Prieto, R., Thornhill, D. and Hoegh-Guldberg, O. (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51: 1149–1158.

    Article  Google Scholar 

  • Downs, C. and Downs, A. (2007) Preliminary examination of short-term cellular toxicological responses of the coral Madracis mirabilis to acute irgarol 1051 exposure. Arch. Environ. Contam. Toxicol. 52: 47–57.

    Article  CAS  Google Scholar 

  • Downs, C.A., Fauth, J.E., Halas, J.C., Dustan, P., Bemiss, J. and Woodley, C.M. (2002) Oxidative stress and seasonal coral bleaching. Free Radical Biol. Med. 33: 533–543.

    Article  CAS  Google Scholar 

  • Dubinsky, Z. and Jokiel, P. (1994) The ration of energy and nutrient fluxes regulates the symbiosis between zooxanthellae and corals. Pac. Sci. 48: 313–324.

    Google Scholar 

  • Dubinsky, Z. and Stambler, N. (1996) Marine pollution and coral reefs. Global Change Biol. 2: 511–526.

    Article  Google Scholar 

  • Dubinsky, Z., Stambler, N., Benzion, M., McCloskey, L.R., Muscatine, L. and Falkowski, P.G. (1990) The effect of external nutrient resources on the optical-properties and photosynthetic efficiency of Stylophora-pistillata. P. Roy. Soc. Lond. B. Bial. Sci. 239: 231–246.

    Google Scholar 

  • Dunn, S.R., Bythell, J.C., Le Tissier, M.D.A., Burnett, W.J. and Thomason, J.C. (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J. Exp. Mar. Biol. Ecol. 272: 29–53.

    Article  Google Scholar 

  • Edmunds, P.J. (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar. Ecol. Prog. Ser. 341: 1–13.

    Article  Google Scholar 

  • Edmunds, P.J., Gates, R.D., Leggat, W., Hoegh-Guldberg, O. and Allen-Requa, L. (2005). The effect of temperature on the size and population density of dinoflagellates in larvae of the reef coral Porites astreoides. Invertebr. Biol. 124: 185–193.

    Article  Google Scholar 

  • Fabricius, K.E. (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50: 125–146.

    Article  PubMed  CAS  Google Scholar 

  • Fabricius, K.E., Wild, C., Wolanski, E. and Abele, D. (2003) Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits. Estuarine Coastal Shelf Sci. 57: 613–621

    Article  CAS  Google Scholar 

  • Fagoonee, I., Wilson, H.B., Hassell, M.P., Turner, J.R. (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283: 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Fang, L.-S., Wang, J-T. and Lin, K.-L. (1998) The subcellular mechanism of the release of zooxanthellae during coral bleaching. Proc. Nat. Sci. Counc. Repub. China Part B 22: 150–158.

    CAS  Google Scholar 

  • Ferrier-Pages, C., Schoelzke, V., Jaubert, J., Muscatine, L. and Hoegh-Guldberg, O. (2001) Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 259: 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier-Pages, C., Richard, C., Forcioli, D., Allemand, D., Pichon, M. and Shick, J.M. (2007) Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213: 76–87.

    Article  PubMed  Google Scholar 

  • Fine, M. and Tchernov, D. (2007) Scleractinian coral species survive and recover from decalcification. Science 315: 1811.

    Article  PubMed  CAS  Google Scholar 

  • Fitt, W.K., McFarland, F.K., Warner, M.E. and Chilcoat, G.C. (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45: 677–685

    Article  CAS  Google Scholar 

  • Fitt, W.K., Brown, B.E., Warner, M.E. and Dunne, R.P. (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20: 51–65.

    Article  Google Scholar 

  • Foster, N.L., Baums, I.B. and Mumby, P.J. (2007) Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annulari. J. Anim. Ecol. 76: 384–391.

    Article  PubMed  Google Scholar 

  • Frisch, A.J., Ulstrup, K.E. and Hobbs, J.A. (2007) The effects of clove oil on coral: an experimental evaluation using Pocillopora damicornis (Linnaeu). J. Exp. Mar. Biol. Ecol. 345: 101–109.

    Article  CAS  Google Scholar 

  • Gardner, T.A., Cote, I.M., Gill, J.A., Grant, A. and Watkinson, A.R. (2003) Long-term region-wide declines in Caribbean corals. Science 301: 958–960.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman, J.F. and Dommes, J. (2002) Concepts in plant stress physiology: application to plant tissue cultures. Plant Growth Regul. 37: 263–285.

    Article  CAS  Google Scholar 

  • Gates, R.D., Baghdasarian, G. and Muscatine, L. (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol. Bull. 182: 324–332.

    Article  Google Scholar 

  • Glynn, P.W. (1973) Acanthaster – effect on coral reef growth in panama. Science 180: 504–506.

    Article  PubMed  CAS  Google Scholar 

  • Goulet, T.L. (2006) Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 321: 1–7.

    Article  Google Scholar 

  • Goulet, T.L. (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar. Ecol. Prog. Ser. 335: 243–248.

    Article  Google Scholar 

  • Grant, A.J., Graham, K., Frankland, S. and Hinde, R. (2003) Effect of copper on algal-host interactions in the symbiotic coral Plesiastrea versipora. Plant Physiol. Biochem. 41: 383–390.

    Article  CAS  Google Scholar 

  • Grottoli, A.G., Rodrigues, L.J. and Palardy, J.E. (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440: 1186–1189.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, L.P., Suzuki, A. and Kawahata, H. (2007) Endolithic aspartic acid as a proxy of fluctuations in coral growth. J. Geophys. Res. – Biogeosciences 112 (G1), Art. No. G01001.

    Google Scholar 

  • Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. and Samuel, M.D. (2002) Ecology – Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158–2162.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, K., Shibuno, T., Murayama-Kayano, E., Tanaka, H. and Kayano, T. (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23: 485–491.

    Google Scholar 

  • Hoegh-Guldberg, O. (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res. 50: 839–866.

    Article  Google Scholar 

  • Hoegh-Guldberg, O. (2005) Low coral cover in a high-CO2 world. J. Geophys. Res. 110: C09S06; doi:10.1029/2004JC002528.

    Google Scholar 

  • Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., Hatziolos, M.E. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1744.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom, M.O, Anthony, K.R.N. and Connolly, S.R. (2006). Energetic cost of photoinhibition in corals. Mar. Ecol. Prog. Ser. 313: 1–12.

    Article  CAS  Google Scholar 

  • Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nystrom, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B. and Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science 301: 929–933.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-Prieto, R. (1997) Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. Proceedings 8th International Coral Reef Symposium (Panama) 2: 1313–1318.

    CAS  Google Scholar 

  • Iglesias-Prieto, R., Matta, J.L., Robins, W.A. and Trench, R.K. (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Nat. Acad. Sci. U.S.A. 89: 10302–10305.

    Article  CAS  Google Scholar 

  • Jackson, J.B.C. (1991) Adaptation and diversity of reef corals. BioScience 41: 475–482.

    Article  Google Scholar 

  • Jokiel, P.L. and Brown, E.K. (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Global Change Biol. 10: 1627–1641.

    Article  Google Scholar 

  • Jokiel, P.L. and Coles, S.L. (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8: 155–162.

    Article  Google Scholar 

  • Jokiel, P.L.; Hunter, C.L.,Taguchi, S, and Watarai, L. (1993) Ecological impact of a fresh-water reef kill in Kaneohe bay, Oahu, Hawaii. Coral Reefs 12: 177–184

    Article  Google Scholar 

  • Jokiel, P.L., Rodgers, K.S., Kuffner, I.B., Andersson, A.J., Cox E.F. and Mackenzie, F.T (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27: 473–483.

    Article  Google Scholar 

  • Jompa, J. and McCook, L.J. (2003) Coral–algal competition: macroalgae with different properties have different effects on corals. Mar. Ecol. Prog. Ser. 258: 87–95.

    Article  Google Scholar 

  • Jones, A.M., Berkelmans, R., van Oppen, M.J.H., Mieog, J.C. and Sinclair, W. (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event, field evidence of acclimatization. P. Roy. Soc. Lond. B. Biol Sci. 275: 1359–1365.

    Article  CAS  Google Scholar 

  • Jones, R.J., Kildea, T. and Hoegh-Guldberg, O. (1999) PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar. Pollut. Bull. 38: 864–874.

    Article  CAS  Google Scholar 

  • Karako, S., Stambler, N. and Dubinsky, Z. (2002) The taxonomy and evolution of the zooxanthellae-coral symbiosis, In: J. Seckbach (ed.) Symbiosis: Mechanisms and Model Systems. Kluwer, The ­Netherlands, pp. 539–557.

    Google Scholar 

  • Kleypas, J.A., Buddemeier, R.W., Archer, D., Gattuso, J.-P., Langdon, C. and Opdyke, B.N. (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284: 118–120.

    Article  PubMed  CAS  Google Scholar 

  • Kuffner, I.S., Walters, L.J., Becerro, M.A., Paul, V.J., Ritson-Williams, R., Beach, K.S. (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323: 107–117.

    Article  Google Scholar 

  • Kushmaro, A., Rosenberg, E., Fine, M., Ben Haim, Y. and Loya, Y. (1998) Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar. Ecol. Prog. Ser. 171: 131–137.

    Article  Google Scholar 

  • Lasker, H.R. and Coffroth, M.A. (1999) Responses of clonal reef taxa to environmental change. Am. Zool. 39: 92–103.

    Google Scholar 

  • Lesser, M.P. (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41: 271–283.

    Article  CAS  Google Scholar 

  • Lesser, M.P. (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16: 187–192.

    Article  Google Scholar 

  • Lesser, M.P. (2007) Coral reef bleaching and global climate change: can corals survive the next century? Proc. Nat. Acad. Sci. U.S.A. 104: 5259–5260.

    Article  CAS  Google Scholar 

  • Lesser, M.P. and Farrell, J.H. (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23: 367–377.

    Article  Google Scholar 

  • Lesser, M.P., Bythell, J.C., Gates, R.D., Johnstone, R.W. and Hoegh-Guldberg, O. (2007) Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Biol. Ecol. 346: 36–44.

    Article  Google Scholar 

  • Levy, O.Y., Achituv, Y., Yacobi, Z., Stambler, N. and Dubinsky, Z. (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD & CAT) in the coral Favia favus. J. Exp. Mar. Biol. Ecol. 328: 35–46.

    Article  CAS  Google Scholar 

  • Lohr, J., Munn, C.B. and Wilson, W.H. (2007) Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl. Environ. Microbiol. 73: 2976–2981.

    Article  PubMed  CAS  Google Scholar 

  • Loya, Y. and Rinkevich, B. (1980) Effects of oil pollution on coral-reef communities. Mar. Ecol.-Prog. Ser. 3: 167–180.

    Google Scholar 

  • Marubini, F., Ferrier-Pages, C., Furla, P. and Allemand, D. (2008) Coral calcification responds to seawater acidification, a working hypothesis towards a physiological mechanism. Coral Reefs 27: 491–499; DOI 10.1007/s00338-008-0375-6.

    Article  Google Scholar 

  • Maynard, J.A., Anthony, K.R.N., Marshall, P.A. and Masiri, I. (2008) Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155: 173–182.

    Article  Google Scholar 

  • McClanahan, T.R. (1990) Causes and consequences of sea-urchin abundance and diversity in Kenyan coral-reef lagoons. Oecologia 83: 362–370.

    Google Scholar 

  • Murata, N., Takahashi, S., Nishiyama, Y. and Allakhverdiev, S.I. (2007) Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta 1767: 414–421.

    Article  PubMed  CAS  Google Scholar 

  • Muscatine, L., McCloskey, L.R. and Marian, R.E. (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26: 601–611.

    Article  CAS  Google Scholar 

  • Nakamura, T. and van Woesik, R. (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212: 301–304.

    Article  Google Scholar 

  • Nystrom, M., Moberg, F. and Tedengren, M. (1997) Natural and anthropogenic disturbance of reef corals in the inner gulf of Thailand: physiological effects of reduced salinity, copper, and siltation. Proceedings of the Eighth International Coral Reef Symposium II, pp. 1893–1898.

    Google Scholar 

  • Nystrom, M., Folke, C. and Moberg, F. (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15: 413–417.

    Article  PubMed  Google Scholar 

  • Nystrom, M., Nordemar, I. and Tedengren, M. (2001) Simultaneous and sequential stress from increased temperature and copper on the metabolism of the hermatypic coral Porites cylindrica. Mar. Biol. 138: 1225–1231.

    Article  CAS  Google Scholar 

  • Pawlik, J.R., Steindler, L., Henkel, T.P., Beer, S. and Ilan, M. (2007) Chemical warfare on coral reefs: sponge metabolites differentially affect coral symbiosis in situ. Limnol. Oceanogr. 52: 907–911.

    Article  CAS  Google Scholar 

  • Perez, S. and Weis, V. (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209: 2804–2810.

    Article  PubMed  CAS  Google Scholar 

  • Philipp, E. and Fabricius, K. (2003) Photophysiological stress in scleractinian corals in response to short-term sedimentation. J. Exp. Mar. Biol. Ecol. 287: 57–78.

    Article  Google Scholar 

  • Quan-Young, L.I. and Espinoza-Avalos, J. (2006) Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scleractinia) when competing with mixed turf algae. Limnol. Oceanogr. 51: 1159–1166.

    Article  Google Scholar 

  • Raberg, S., Nystrom, M., Eros, M. and Plantman, P. (2003) Impact of the herbicides 2,4-D and diuron on the metabolism of the coral Porites cylindrical. Mar. Environ. Res. 56: 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, P.J., Gademann, R. and Larkum, A.W.D. (2001) Zooxanthellae expelled from bleached corals at 33 degrees C are photosynthetically competent. Mar. Ecol. Prog. Ser. 220: 163–168.

    Article  CAS  Google Scholar 

  • Ralph, P.J., Larkum, A.W.D. and Kuhl, M. (2005) Temporal patterns in effective quantum yield of individual zooxanthellae expelled during bleaching. J. Exp. Mar. Biol. Ecol. 316: 17–28.

    Article  Google Scholar 

  • Randi, D.R., Dimond, J.L., Thornhill, D.J., Leichter, J.J., Helmuth, B., Kemp, D.W. and Lewis, S.M. (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25: 361–368.

    Article  Google Scholar 

  • Reichelt-Brushett, A.J. and McOrist, G. (2003) Trace metals in the living and nonliving components of scleractinian corals. Mar. Pollut. Bull. 46: 1573–1582.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-Pages, C., Jaubert, J. and Gattuso, J.P. (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol. 9: 1660–1668.

    Article  Google Scholar 

  • Richier, S., Furla, P., Plantivaux, A., Merle, P.L. and Allemand, D. (2005) Symbiosis-induced adaptation to oxidative stress. J. Exp. Biol. 208: 277–285.

    Article  PubMed  Google Scholar 

  • Richier, S., Sabourault, C., Courtiade, J., Zucchini, N., Allemand, D. and Furla, P. (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone. Anemonia viridis. FEBS J. 273: 4186–4198.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Roman, A., Hernandez-Pech, X., Thome, P.E., Enriquez, S. and Iglesias-Prieto, R. (2006) Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol. Oceanogr. 51: 2702–2710.

    Article  Google Scholar 

  • Rosenberg, E. and Loya, Y. (eds.) (2004) Coral Health and Disease, Springer, Berlin, 488 pp.

    Google Scholar 

  • Rosenberg, E., Koren, O., Reshef, L., Efrony, R. and Zilber-Rosenberg, I. (2007) The role of microorganisms in coral health, disease and evolution. Nature Rev. Microbiol. 5: 355–362.

    Article  CAS  Google Scholar 

  • Rowan, R. (2004) Coral bleaching - Thermal adaptation in reef coral symbionts. Nature 430: 742–742.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, R., Knowlton, N., Baker, A. and Jara, J. (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Sala, E. and Knowlton, N. (2006) Global marine biodiversity trends. Annu. Rev. Environ. Res. 31: 93–122.

    Article  Google Scholar 

  • Sandeman, I.M. (2007) Fragmentation of the gastrodermis and detachment of zooxanthellae in symbiotic cnidarians: a role for hydrogen peroxide and Ca2+ in coral bleaching and algal density control. Rev. Biol. Trop. 54: 79–96.

    Google Scholar 

  • Saxby, T., Dennison, W.C. and Hoegh-Guldberg, O. (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248: 85–97.

    Article  Google Scholar 

  • Schloder, C. and D’Croz, L. (2004) Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 313: 255–268.

    Article  Google Scholar 

  • Shick, J.M., Lesser, M.P., Dunlap, W.C., Stochaj, W.R., Chalker, B.E. and Wu Won, J. (1995) Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar. Biol. 122: 41–51.

    Article  CAS  Google Scholar 

  • Shick, J.M., Lesser, M.P. and Jokiel, P.L. (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol. 2: 527–545.

    Article  Google Scholar 

  • Smith, D.J., Suggett, D.J. and Baker, N.R. (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol. 11: 1–11.

    Article  Google Scholar 

  • Smith, J.E., Shaw, M., Edwards, R.A., Obura, D., Pantos, O., Sala, E., Sandin, S.A., Smriga, S., Hatay, M. and Rohwer, F.L. (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9: 835–845.

    Article  PubMed  Google Scholar 

  • Stambler, N. and Dubinsky, Z. (2004) Stress effects on metabolism and photosynthesis of hermatypic corals, In: E. Rosenberg and Y. Loya (eds.) Coral Health and Disease. Springer, Berlin, pp. 195–215.

    Chapter  Google Scholar 

  • Stambler, N., Poper, N., Dubinsky, Z. and Stimson, J. (1991) Effects of water motion and nutrients enrichment on the coral Pocillopora damicornis. Pac. Sci. 45: 299–307.

    Google Scholar 

  • Stanley, G.D. (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312: 857–858.

    Article  PubMed  CAS  Google Scholar 

  • Stimson, J., Sakai, K. and Sembali, H. (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21: 409–421.

    Google Scholar 

  • Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. and Ogawa, H. (2007) Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 52: 1139–1146.

    Article  CAS  Google Scholar 

  • Tchernov, D., Gorbunov, M.Y., de Vargas, C., Narayan Yadav, S., Milligan, A.J., Häggblom, M. and Falkowski, P.G. (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Nat. Acad. Sci. U.S.A. 101: 13531–13535.

    Article  CAS  Google Scholar 

  • Tkachenko, K.S., Wu, B.J., Fang, L.S. and Fun, T.U. (2007) Dynamics of a coral reef community after mass mortality of branching Acropora corals and an outbreak of anemones. Mar. Biol. 151: 185–194.

    Article  Google Scholar 

  • Torregiani, J.H. and Lesser, M.P. (2007) The effects of short-term exposures to ultraviolet radiation in the Hawaiian Coral Montipora verrucosa. J. Exp. Mar. Biol. Ecol. 340: 194–203.

    Article  CAS  Google Scholar 

  • Trench, R.K. (1987) Dinoflagellate in non-parasitic symbiosis, In: F.J.R. Taylor (ed.) The Biology of Dinoflagellate Botanical Monographs, vol. 21. Blackwell, Oxford, pp. 531–570.

    Google Scholar 

  • Venn, A.A., Wilson, M.A., Trapido-Rosenthal, H.G., Keely, B.J. and Douglas, A.E. (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29: 2133–2142.

    Article  PubMed  CAS  Google Scholar 

  • Veron, J.E.N. (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27: 459–472

    Article  Google Scholar 

  • Victor, S. and Richmond R.H. (2005) Effect of copper on fertilization success in the reef coral Acropora surculosa. Mar. Pollut. Bull. 50: 1433–1456.

    Article  CAS  Google Scholar 

  • Ward, J.R., Kim, K. and Harvell, C.D. (2007) Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329: 115–121.

    Article  Google Scholar 

  • Warner, M.E., Fitt, W.K. and Schmidt, G.W. (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Nat. Acad. Sci. U.S.A. 96: 8007–8012.

    Article  CAS  Google Scholar 

  • Warner, M.E., Chilcoat, G.C., McFarland, F.K. and Fitt, W.K. (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar. Biol. 141: 31–38.

    Article  CAS  Google Scholar 

  • Weber, M., Lott, C. and Fabricius, K.E. (2006) Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Biol. Ecol. 336: 18–32.

    Article  CAS  Google Scholar 

  • Weis, VM. (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211: 3059–3066.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, C.R. and Buddemeier, R.W. (1994) Report of the UNEP-IOC-ASPEI-IUCN Global Task Team on the Implications of Climate Change on Coral Reefs: Implications for People and Reefs.

    Google Scholar 

  • Wilson, W.H., Francis, I., Ryan, K. and Davy, S.K. (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat. Microbiol. Ecol. 25: 99–102.

    Article  Google Scholar 

  • Winters, G., Loya, Y. and Beer, S. (2006) In situ measured seasonal variations in F-v/F-m of two common Red Sea corals. Coral Reefs 25: 593–598.

    Article  Google Scholar 

  • Worachananant, S., Carter, R.W. and Hockings, M. (2007) Impacts of the 2004 tsunami on Surin Marine National Park, Thailand. Coastal Management 35: 399–412.

    Article  Google Scholar 

  • Wórum, F.P., Carricart-Ganivet, J.P., Benson, L. and Golicher, D. (2007) Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming. Limnol. Oceanogr. 52: 2317–2323.

    Article  Google Scholar 

  • Zakai, D. and Chadwick-Furman, N.E. (2002) Impacts of intensive recreational diving on reef corals at Eilat, northern Red Sea. Biol. Conserv. 105: 179–187.

    Article  Google Scholar 

  • Zuschin, M. and Stachowitsch, M. (2007) The distribution of molluscan assemblages and their postmortem fate on coral reefs in the Gulf of Aqaba (northern Red Sea). Mar. Biol. 151: 2217–2230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Stambler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stambler, N. (2010). Coral Symbiosis Under Stress. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_10

Download citation

Publish with us

Policies and ethics