Skip to main content

Chapter 7 Nitrogen and Sulfur Metabolism in C4 Plants

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 32))

Summary

C4 photosynthetic mechanism is based on a spatial separation of CO2 assimilating enzymes. The assimilation of two mineral nutrients, nitrogen and sulfur, is also localized in a cell-specific manner in most C4 species. N assimilation seems to be confined to mesophyll whereas sulfate reduction has been previously reported to be bundle sheath specific. The latter view has been challenged by finding an ubiquitous presence of enzymes of sulfate assimilation in the dicot C4 species of Flaveria. Although inter- and intracellular distribution of enzymes of N assimilation in C4 plants differ from C3 plants and C4 plants have a better N use efficiency, very little is known about the physiological consequences of this distribution. Analogically, no evolutionary advantage for the BSC localization of sulfate assimilation has been identified. On the other hand, the organization and general regulation of the pathways is the same in C3 and C4 plants. In this chapter the two essential pathways of plant primary metabolism, nitrate and sulfate assimilation, as well as the synthesis of glutathione, the major sulfur containing metabolite involved in stress defense, will be described. The general regulation of the pathways as well as specific features connected with C4 photosynthesis will be discussed. The major open questions of N and S metabolism in C4 plants will be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APR:

Adenosine 5′-phosphosulfate reductase

APS:

Adenosine 5′-phosphosulfate

ATPS:

ATP sulfurylase

BSC:

Bundle sheath cells

ΓEC:

γ-Glutamylcysteine

ΓECS:

γ-Glutamylcysteine synthetase

GOGAT:

Glutamate synthase

GR:

Glutathione reductase

GS:

Glutamine synthetase

GSH:

Glutathione

GSHS:

Glutathione synthetase

GSSG:

Oxidized glutathione, glutathione disulfide

MC:

Mesophyll cells

NR:

Nitrate reductase

OAS:

O-Acetylserine

ROS:

Reactive oxygen species

References

  • Badiani M, Paolacci AR, D’Annibale A and Sermanni GG (1993) Antioxidants and photosynthesis in the leaves of Triticum durum L. seedlings acclimated to low, non-chilling temperature. J Plant Physiol 142: 18–24

    CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S and Mullineaux PM (2004) Evidence for direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2446–2462

    Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM and Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40: 729–736

    PubMed  CAS  Google Scholar 

  • Bassüner B, Keerberg O, Bauwe H, Pyarnik T and Keerberg H (1984) Photosynthetic CO2 metabolism in C3-C4 intermediate and C4 species of Flaveria (Asteraceae). Biochem Physiol Pflanzen 179: 631–634

    Google Scholar 

  • Bauwe H (1984) Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of C3, C4, and C3-C4 intermediate species of Flaveria (Asteraceae). Biochem Phys Pflanzen 179: 253–268

    CAS  Google Scholar 

  • Becker TW, Perrot-Rechenmann C, Suzuki A and Hirel B (1993) Subcellular and immunocytochemical localization of the enzymes involved in ammonia assimilation in mesophyll and bundle-sheath cells of maize leaves. Planta 191: 129–136

    CAS  Google Scholar 

  • Becker TW, Carrayol E and Hirel B (2000) Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta 211: 800–806

    PubMed  CAS  Google Scholar 

  • Bloom AJ, Jackson LE and Smart DR (1993) Root growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ 16: 1294–1301

    Google Scholar 

  • Bolchi A, Petrucco S, Tenca PL, Foroni C and Ottonello S (1999) Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine. Plant Mol Biol 39: 527–537

    PubMed  CAS  Google Scholar 

  • Brown RH (1978) A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18: 93–98

    CAS  Google Scholar 

  • Brunner M, Kocsy G, Rüegsegger A, Schmutz D and Brunold C (1995) Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in maize. J Plant Physiol 146: 743–747

    CAS  Google Scholar 

  • Brunold C and Schiff JA (1976) Studies of sulfate utilization by algae. 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization. Plant Physiol 57: 430–436

    PubMed  CAS  Google Scholar 

  • Brunold C and Suter M (1989) Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta 179: 228–234

    CAS  Google Scholar 

  • Buchner P, Takahashi H and Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55: 1765–1773

    PubMed  CAS  Google Scholar 

  • Burgener M, Suter M, Jones S and Brunold C (1998) Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves. Plant Physiol 116: 1315–1322

    PubMed  CAS  Google Scholar 

  • Burnell JN (1984) Sulfate assimilation in C4 plants. Plant Physiol 75: 873–875

    PubMed  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS and Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141: 446–455

    PubMed  CAS  Google Scholar 

  • Chalot M and Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Lett 22: 21–44

    CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50: 277–303

    PubMed  CAS  Google Scholar 

  • Cheng CL, Acedo GN, Cristinsin M and Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89: 1861–1864

    PubMed  CAS  Google Scholar 

  • Chew O, Whelan J and Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278: 46869–46877

    PubMed  CAS  Google Scholar 

  • Cobbett C and Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159–182

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R and Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-­glutamylcysteine synthetase. Plant J 16: 73–78

    PubMed  CAS  Google Scholar 

  • Collier M, Fotelli M, Nahm M, Kopriva S, Rennenberg H, Hanke D and Geßler A (2003) Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level- Interactions between cytokinins and soluble N compounds. Plant Cell Environ 26: 1549–1560

    CAS  Google Scholar 

  • Day DA, Poole PS, Tyerman SD and Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58: 61–71

    PubMed  CAS  Google Scholar 

  • Dixon DP, Cummins L, Cole DJ and Edwards R (1998) ­Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1: 258–266

    PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH and Foyer CH (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114: 1031–1037

    PubMed  CAS  Google Scholar 

  • Edwards E, Rawsthorne S and Mullineaux P (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180: 278–284

    CAS  Google Scholar 

  • Edwards GE, Franceschi VR, Ku MS, Voznesenskaya EV, Pyankov VI and Andreo CS (2001) Compartmentation of photosynthesis in cells and tissues of C4 plants. J Exp Bot 52: 577–590

    PubMed  CAS  Google Scholar 

  • Farago S and Brunold C (1994) Regulation of thiol contents in maize roots by intermediates and effectors of glutathione synthesis. J Plant Physiol 144: 433–437

    CAS  Google Scholar 

  • Fonseca F, Bowsher CG and Stulen I (1997) Impact of elevated atmospheric CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiol Plant 100: 940–948

    CAS  Google Scholar 

  • Foyer CH and Rennenberg H (2000) Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. In: Brunold C et al (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects, pp 127–153. Paul Haupt, Bern, Switzerland

    Google Scholar 

  • Foyer CH, Valadier MH, Migge A and Becker TW (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol 117: 283–292

    PubMed  CAS  Google Scholar 

  • Gallardo F, Fu J, Canton FR, Garcia-Gutierrez A, Canovas FM and Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210: 19–26

    PubMed  CAS  Google Scholar 

  • Gerwick BC and Black CC (1979) Sulfur assimilation in C4 plants. Plant Physiol 64: 590–593

    PubMed  CAS  Google Scholar 

  • Gerwick BC, Ku SB and Black CC (1980) Initiation of sulfate activation: a variation in C4 photosynthesis plants. Science 209: 513–515

    PubMed  CAS  Google Scholar 

  • Gessler A, Kopriva S and Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24: 1313–1321

    PubMed  CAS  Google Scholar 

  • Gómez LD, Vanacker H, Buchner P, Noctor G and Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134: 1662–1671

    PubMed  Google Scholar 

  • Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM and Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci USA 97: 11108–11113

    PubMed  CAS  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM and Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Apl Biol 138: 83–89

    CAS  Google Scholar 

  • Hallock DL, Brown RH and Blaser RE (1965) Relative yield and composition of Kentucky 31 fescue and coastal bermudagrass at four nitrogen levels. Agron J 57: 539–542

    Google Scholar 

  • Harada E, Kusano T and Sano H (2000) Differential expression of genes encoding enzymes involved in sulfur assimilation pathways in response to wounding and jasmonate in Arabidopsis thaliana. J Plant Physiol 156: 272–276

    CAS  Google Scholar 

  • Harel E, Lea PJ, and Miflin BJ (1977) The localisation of enzymes of nitrogen assimilation in maize leaves and their activities during greening. Planta 134: 195–200

    CAS  Google Scholar 

  • Hartmann TN, Fricker MD, Rennenberg H and Meyer AJ (2003) Cell-specific measurement of cytosolic glutathione in poplar leaves. Plant Cell Environ 26: 965–975

    PubMed  CAS  Google Scholar 

  • Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H and Kopriva S (2004) Sulfate assimilation in poplars (Populus tremula x P. alba) overexpressing γ-glutamylcysteine synthetase in the cytosol. J Exp Bot 55: 837–845

    PubMed  CAS  Google Scholar 

  • Hatch MD and Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking CR and Heber U (eds) Encyclopedia of Plant Physiology, New Series, Vol 3, pp 144–184. Springer-Verlag, Berlin

    Google Scholar 

  • Hell R and Bergmann L (1990) γ-glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localisation. Planta 180: 603–312

    CAS  Google Scholar 

  • Herschbach C and Rennenberg H (2001) Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Prog Bot 62: 177–192

    CAS  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M and Saito K (2003) Global expression profiling of sulphur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulphur nutrition. Plant J 33: 651–663

    PubMed  CAS  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J and Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595

    PubMed  CAS  Google Scholar 

  • Hirel B, Layzell DB, McCashin B, McNally SF and Canvin DT (1983) Isoforms of glutamine synthetase in Panicum species having C3, C4, and intermediate photosynthetic pathways. Can J Bot 61: 2257–2259

    CAS  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M and Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125: 1258–1270

    PubMed  CAS  Google Scholar 

  • Hopkins L, Parmar S, Bouranis DL, Howarth JR and Hawkesford MJ (2004) Coordinated expression of sulfate uptake and components of the sulfate assimilatory pathway in maize. Plant Biol 6: 408–414

    PubMed  CAS  Google Scholar 

  • Hopkins L, Parmar S, Błaszczyk A, Hesse H, Hoefgen R and Hawkesford MJ (2005) O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138: 433–440

    PubMed  CAS  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T and Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281: 27557–27565

    PubMed  CAS  Google Scholar 

  • Hylton CM, Rawsthorne S, Smith AM, Jones DA and Woolhouse HW (1988) Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. Planta 175: 452–459

    CAS  Google Scholar 

  • Inokuchi R, Kuma KI, Miyata T and Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plant 116: 1–11

    PubMed  CAS  Google Scholar 

  • Jez JM, Cahoon RE and Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279: 33463–33470

    PubMed  CAS  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hähnel U, Hänsch R, Hartmann T, Kopriva S, Kruse C, ­Mendel RR, Papenbrock J, Reichelt M, Rennenberg H, Schnug E, Schmidt A, Textor S, Tokuhisa J, Wachter A, Wirtz M, Rausch T, and Hell R (2005) Expression ­profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 36: 491–508

    Google Scholar 

  • Kaiser WM and Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52: 1981–1989

    PubMed  CAS  Google Scholar 

  • Ketchner SL and Sayre RT (1992) Characterization of the expression of the photosystem II-oxygen evolving complex in C4 species of Flaveria. Plant Physiol 98: 1154–1162

    PubMed  CAS  Google Scholar 

  • Kocsy G, Brunner M, Rüegsegger A, Stamp P and Brunold C (1996) Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta 198: 365–370

    CAS  Google Scholar 

  • Kocsy G, Owttrim G, Brander K and Brunold C (1997) Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype. Physiol Plant 99: 249–254

    CAS  Google Scholar 

  • Kocsy G, Szalai G, Vagujfalvi A, Stehli L, Orosz G and Galiba G (2000a) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210: 295–301

    PubMed  CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Suter M, Ruegsegger A, Galli U, Szalai G, Galiba G and Brunold C (2000b) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211: 528–536

    PubMed  CAS  Google Scholar 

  • Kocsy G, Galiba G and Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113: 158–164

    PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495

    PubMed  CAS  Google Scholar 

  • Kopriva S and Koprivova A (2005) Sulfate assimilation and glutathione synthesis in C4 plants. Photosynth Res 86: 363–372

    PubMed  CAS  Google Scholar 

  • Kopriva S and Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55: 1831–1842

    PubMed  CAS  Google Scholar 

  • Kopriva S, Chu C-C and Bauwe H (1996) Molecular phylogeny of Flaveria as deduced from the analysis of H-protein nucleotide sequences. Plant Cell Environ 19: 1028–1036

    CAS  Google Scholar 

  • Kopriva S, Muheim R, Koprivova A, Trachsler N, Catalano C, Suter M and Brunold C (1999) Light regulation of assimilatory sulfate reduction in Arabidopsis thaliana. Plant J 20: 37–44

    PubMed  CAS  Google Scholar 

  • Kopriva S, Jones S, Koprivova A, Suter M, von Ballmoos P, Brander K, Flückiger J and Brunold C (2001) Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. Plant Biol 3: 24–31

    CAS  Google Scholar 

  • Kopriva S, Suter M, von Ballmoos P, Hesse H, Krähenbühl U, Rennenberg H and Brunold C (2002) Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol 130: 1406–1413

    PubMed  CAS  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C and Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122: 737–746

    PubMed  CAS  Google Scholar 

  • Koprivova A, Melzer M, von Ballmoos P, Mandel T, Brunold C and Kopriva S (2001) Assimilatory sulfate reduction in C3, C3-C4, and C4 species of Flaveria. Plant Physiol 127: 543–550

    PubMed  CAS  Google Scholar 

  • Kruse J, Hetzger I, Hänsch R, Mendel RR, Walch-Liu P, Engels C, and Rennenberg H (2002) Elevated pCO(2 )favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. J Exp Bot 53: 2351–2367

    PubMed  CAS  Google Scholar 

  • Ku MSB, Wu JR, Dai ZY, Scott RA, Chu C and Edwards GE (1991) Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol 96: 518–528

    PubMed  CAS  Google Scholar 

  • Lappartient AG and Touraine B (1996) Demand-driven control of root ATP sulphurylase activity and SO 2-4 uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol 111: 147–157

    PubMed  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Domingo Olive F, Filleur S, Daniel-Vedele F and Gojon A (1999) Molecular and functional regulation of two NO 3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18: 509–519

    PubMed  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F and Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15: 2218–2232

    PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141–165

    PubMed  CAS  Google Scholar 

  • Lillo C, Meyer C, Lea US, Provan F and Oltedal S (2004) Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot 55: 1275–1282

    PubMed  CAS  Google Scholar 

  • Linka M and Weber AP (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10: 461–465

    PubMed  CAS  Google Scholar 

  • Loque D and von Wiren N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55: 1293–1305

    PubMed  CAS  Google Scholar 

  • Lunn J, Droux M, Martin J and Douce R (1990) Localization of ATP sulfurylase and O-acetylserine (thiol)lyase in spinach leaves. Plant Physiol 94: 1345–1352

    PubMed  CAS  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, ­Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ and Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18: 3252–3274

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T and Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42: 305–314

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K and Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18: 3235–3251

    PubMed  CAS  Google Scholar 

  • Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Murata H, Takao T, Shimonishi Y and Hase T (1999) Complementary DNA cloning and characterization of ferredoxin localized in bundle-sheath cells of maize leaves. Plant Physiol 119: 481–488

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, van Montagu M and Inzé D (1998a) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649–667

    CAS  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M and Inzé D (1998b) Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci USA 95: 12049–12054

    PubMed  CAS  Google Scholar 

  • McNally SF, Hirel B, Gadal P, Mann AF and Stewart GR (1983) Glutamine synthetases of higher plants: evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol 72: 22–25

    PubMed  CAS  Google Scholar 

  • Mellor GE and Tregunna EB (1971) The localization of nitrate-assimilating enzymes in leaves of plants with the C4-pathway of photosynthesis. Can J Bot 49: 137–142

    CAS  Google Scholar 

  • Meyer AJ and Fricker MD (2000) Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy. J Microsc 198: 174–181

    PubMed  CAS  Google Scholar 

  • Meyer AJ, May MJ and Fricker M (2001) Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J 27: 67–78

    PubMed  CAS  Google Scholar 

  • Miflin BJ (1972) The role of light in nitrite reduction: studies with leaf disks. Planta 105: 225–233

    CAS  Google Scholar 

  • Miflin BJ and Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53: 979–987

    PubMed  CAS  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ and Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58: 2297–2306

    PubMed  CAS  Google Scholar 

  • Mok DWS and Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52: 89–118

    PubMed  CAS  Google Scholar 

  • Monson RK and Moore BD (1989) On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ 12: 689–699

    CAS  Google Scholar 

  • Monson RK, Moore BD, Ku MSB and Edwards GE (1986) Co-function of C3- and C4-photosynthetic pathways in C3, C4 and C3-C4 intermediate Flaveria species. Planta 168: 493–502

    CAS  Google Scholar 

  • Moore R and Black CC Jr (1979) Nitrogen assimilation pathways in leaf mesophyll and bundle sheath cells of C4 photosynthesis plants formulated from comparative studies with Digitaria sanguinalis (L.) Scop. Plant Physiol 64: 309–313

    PubMed  CAS  Google Scholar 

  • Mullineaux PM and Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86: 459–474

    PubMed  CAS  Google Scholar 

  • Neuenschwander U, Suter M and Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol 97: 253–258

    PubMed  CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH and Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 112: 1071–1078

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H and Foyer CH (1998a) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L and Foyer CH (1998b) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118: 471–482

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L and Foyer CH (1999) Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot 50: 1157–1167

    CAS  Google Scholar 

  • Nussbaum S, Schmutz K and Brunold C (1988) Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol 88: 1407–1410

    PubMed  CAS  Google Scholar 

  • Ohkama N, Takei K, Sakakibara H, Hayashi H, Yoneyama T and Fujiwara T (2002) Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana. Plant Cell Physiol 43: 1493–1501

    PubMed  CAS  Google Scholar 

  • Oliveira IC and Coruzzi GM (1999) Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol 121: 301–310

    PubMed  CAS  Google Scholar 

  • Papen H, Gessler A, Zumbusch E and Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44: 56–60

    PubMed  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, and Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49: 159–172

    PubMed  CAS  Google Scholar 

  • Passera C and Ghisi R (1982) ATP sulphurylase and O-acetylserine sulphydrylase in isolated mesophyll protoplasts and bundle sheath strands of S-deprived maize leaves. J Exp Bot 33: 432–438

    CAS  Google Scholar 

  • Pastori GM, Mullineaux PM and Foyer CH (2000) Post-transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize. Plant Physiol 122: 667–675

    PubMed  CAS  Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A and Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137 :252–257

    PubMed  Google Scholar 

  • Prior A, Uhrig JF, Heins L, Wiesmann A, Lillig CH, Stoltze C, Soll J and Schwenn JD (1999) Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures. Biochim Biophys Acta 1430: 25–38

    PubMed  CAS  Google Scholar 

  • Rathnam CKM and Das VSR (1974) Nitrate metabolism in relation to the aspartate-type C-4 pathway of photosynthesis in Eleusine coracana. Can J Bot 52: 2599–2605

    CAS  Google Scholar 

  • Rathnam CKM and Edwards GE (1976) Distribution of nitrate-assimilating enzymes between mesophyll protoplasts and bundle sheath cells in leaves of three groups of C4 plants. Plant Physiol 57: 881–885

    PubMed  CAS  Google Scholar 

  • Rausch T and Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations.Trends Plant Sci 10: 503–509

    PubMed  CAS  Google Scholar 

  • Rawsthorne S (1992) C3-C4 intermediate photosynthesis – linking physiology to gene expression. Plant J 2: 267–274

    CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG and Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103: 19206–19211

    PubMed  CAS  Google Scholar 

  • Ritenour GL, Joy KW, Bunning J and Hageman RH. (1966) Intracellular localization of nitrate reductase, nitrite reductase, and glutamic acid dehydrogenase in green leaf tissue. Plant Physiol 42: 233–237

    Google Scholar 

  • Rotte C and Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and ­5′-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialised functions. Plant Physiol 124: 715–724

    PubMed  CAS  Google Scholar 

  • Ruegsegger A and Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428–433

    PubMed  CAS  Google Scholar 

  • Ruegsegger A and Brunold C (1993) Localization of [gamma]-glutamylcysteine synthetase and glutathione synthetase activity in maize seedlings. Plant Physiol 101: 561–566

    PubMed  CAS  Google Scholar 

  • Ruegsegger A, Schmutz D and Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93: 1579–1584

    PubMed  CAS  Google Scholar 

  • Rufty TW Jr, MacKown CT and Volk RJ (1989) Effects of altered carbohydrate availability on whole-plant assimilation of 15NO 3 . Plant Physiol 89: 457–463

    PubMed  CAS  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136: 2443–2450

    PubMed  CAS  Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D and May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94: 2745–2750

    PubMed  CAS  Google Scholar 

  • Santi S, Locci G, Monte R, Pinton R, and Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54: 1851–1864

    PubMed  CAS  Google Scholar 

  • Schmutz D and Brunold C (1984) Intercellular localization of assimilatory sulfate reduction in leaves of Zea mays and Triticum aestivum. Plant Physiol 74: 866–870

    PubMed  CAS  Google Scholar 

  • Schmutz D and Brunold C (1985) Localization of nitrite and sulfite reductase in bundle sheath and mesophyll cells of maize leaves. Physiol Plant 64: 523–528

    CAS  Google Scholar 

  • Schaefer HJ, Haag-Kerwer A and Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97

    Google Scholar 

  • Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50: 187–217

    PubMed  CAS  Google Scholar 

  • Stanford C, Larsen K, Barker DG and Cullimore JV (1993) Differential expression within the glutamine synthetase gene family of the model legume, Medicago truncatula. Plant Physiol 103: 73–81

    PubMed  CAS  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR and Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53: 959–970

    PubMed  CAS  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH and Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P.alba) overexpressing glutathione synthetase. Plant J 7: 141–145

    CAS  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, Op den Camp R, Schaller J, Kuhlemeier C, Schürmann P and Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275: 930–936

    PubMed  CAS  Google Scholar 

  • Tabe LM and Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128: 1137–1148

    PubMed  CAS  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B and Ludwig RA. (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16: 2048–2058

    PubMed  CAS  Google Scholar 

  • Tobin AK and Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot 52: 591–604

    PubMed  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127: 390–397

    PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R and Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31: 729–740

    PubMed  CAS  Google Scholar 

  • Vaughn KC and Campbell WH (1988) Immunogold localization of nitrate reductase in maize leaves. Plant Physiol 88: 1354–1357

    PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ and Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97–109

    PubMed  CAS  Google Scholar 

  • von Arb C and Brunold C (1986) Enzymes of assimilatory sulphate reduction in leaves of Pisum sativum: activity changes during ontogeny and in vivo regulation by H2S and cyst(e)ine. Physiol Plant 67: 81–86

    Google Scholar 

  • von Wiren N, Gazzarrini S, Gojon A and Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3: 254–261

    Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J and Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41: 15–30

    PubMed  CAS  Google Scholar 

  • Wagner BM and Beck EH (1993) Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta 190: 511–518

    CAS  Google Scholar 

  • Walker MA and McKersie BD (1993) Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141: 234–239

    CAS  Google Scholar 

  • Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G and Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136: 2512–2522

    PubMed  CAS  Google Scholar 

  • Weber A and Flugge UI (2002) Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot 53: 865–874

    PubMed  CAS  Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C and De Kok JL (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39: 425–432

    CAS  Google Scholar 

  • Wirtz M, Droux M and Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55: 1785–1798

    PubMed  CAS  Google Scholar 

  • Xiang C and Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539–1550

    PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T and Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122: 887–894

    PubMed  CAS  Google Scholar 

  • Zechmann B, Zellnig G and Muller M (2005) Changes in the subcellular distribution of glutathione during virus infection in Cucurbita pepo (L.). Plant Biol 7: 49–57

    PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L and Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621–2632

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in Stanislav Kopriva’s laboratory at John Innes Centre is supported by the Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kopriva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kopriva, S. (2010). Chapter 7 Nitrogen and Sulfur Metabolism in C4 Plants. In: Raghavendra, A., Sage, R. (eds) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9407-0_7

Download citation

Publish with us

Policies and ethics