Skip to main content

Bee Cognition And Crop Pollination: Proven And Potential Applications

  • Chapter
  • First Online:
All Flesh Is Grass

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 16))

  • 1675 Accesses

Abstract

Make a list of all that you have eaten today. Most likely, your list does not include honey bee larvae – though this is a nutritious food that is a delicacy in some cultures. However, for most of us, about one third of the items on the list would not have been there if not for bees (Delaplane and Mayer, 2000). Clearly, if your list includes honey, you would recognize it as a bee product. But, the main benefit of bees to agriculture is through the pollination services that they provide. The direct benefits of these services would be clear to those who remember that fruits and nuts originate from flowers. Many of these depend on, or profit from, bee pollination. Equally important are indirect benefits of pollination of forage plants, such as alfalfa and clover, for feeding livestock. Pollination is needed in order to produce seeds from which more of these plants can grow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afik, O. and Shafir, S. (2007) Effect of ambient temperature on crop loading in the honey bee, Apis mellifera (Hymenoptera: Apidae). Entomol. Gen. 29: 135–148.

    Google Scholar 

  • Afik, O., Dag, A., Kerem, Z. and Shafir, S. (2006a) Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera). J. Chem. Ecol. 32:1949–1963.

    Article  PubMed  CAS  Google Scholar 

  • Afik, O., Dag, A. and Shafir, S. (2006b) The effect of avocado (Persea americana) nectar composition on its attractiveness to honey bees (Apis mellifera). Apidologie 37: 317–325.

    Article  Google Scholar 

  • Afik, O., Dag, A. and Shafir, S. (2007) Perception of avocado bloom (Lauraceae : Persea americana) by the honey bee (Hymenoptera: Apidae: Apis mellifera). Entomol. Gen. 30: 135–153.

    Google Scholar 

  • Afik, O., Dag, A. and Shafir, S. (2008) Honeybee, Apis mellifera, round dance is influenced by trace components of floral nectar. Anim. Behav. 75: 371–377.

    Article  Google Scholar 

  • Afik, O., Dag, A., Yeselson, Y., Schaffer, A., Shafir, S. (2010) Selection and breeding of honey bees for higher or lower collection of avocado nectar. J. Econ. Entomol. 103:228–233.

    Google Scholar 

  • Al-Tikrity, W.S., Benton, A.W., Risius, M.L. and Clarke, J.W.W. (1972) The effect of length of stay of a honeybee colony in a crownvetch field on its foraging behaviour. J. Apic. Res. 11: 51–57.

    Google Scholar 

  • Barron, A.B., Maleszka, R., Vander Meer, R.K. and Robinson, G.E. (2007) Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci. USA 104: 1703–1707.

    Article  PubMed  CAS  Google Scholar 

  • Barron, A.B., Maleszka, R., Helliwell, P.G. and Robinson, G.E. (2009) Effects of cocaine on honey bee dance behaviour. J. Exp. Biol. 212: 163–168.

    Article  PubMed  Google Scholar 

  • Buchmann, S.L. and Cane, J.H. (1989) Bees assess pollen returns while sonicating Solanum flowers. Oecologia 81: 289–294.

    Article  Google Scholar 

  • Cartar, R.V. (1991) A test of risk-sensitive foraging in wild bumble bees. Ecology 72:888–895.

    Article  Google Scholar 

  • Chittka, L. and Thomson, J.D. (eds.) (2001) Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chittka, L., Thomson, J.D. and Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86: 361–377.

    Article  CAS  Google Scholar 

  • Dag, A., Fetscher, A.E., Afik, O., Yeselson, Y., Schaffer, A., Kamer, Y., Waser, N.M., Madore, M.A., Arpaia, ML, Hofshi R, Shafir S, 2003. Honey bee (Apis mellifera) strains differ in avocado (Persea americana) nectar foraging preference. Apidologie 34: 299–309.

    Article  Google Scholar 

  • Dag, A., Stern, R.A. and Shafir, S. (2005) Honey bee (Apis mellifera) strains differ in apple (Malus domestica) pollen foraging preference. J. Apic. Res. 44: 15–20.

    Google Scholar 

  • Deisig, N., Lachnit, H., Sandoz, J.C., Lober, K. and Giurfa, M. (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn Mem. 10: 199–208.

    Article  Google Scholar 

  • Delaplane, K.S. and Mayer, D.F. (2000) Crop Pollination by Bees. CABI, New York.

    Book  Google Scholar 

  • Dornhaus, A. and Chittka, L. (1999) Evolutionary origins of bee dances. Nature 40: 38.

    Google Scholar 

  • Dornhaus, A. and Chittka, L. (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav. Ecol. Sociobiol. 50: 570–576.

    Article  Google Scholar 

  • Drezner-Levy, T. and Shafir, S. (2007) Parameters of variable reward distributions that affect risk sensitivity of honey bees. J. Exp. Biol. 210: 269–277.

    Article  PubMed  Google Scholar 

  • Fewell, J.H. and Page, R.E. (2000) Colony-level selection effects on individual and colony foraging task performance in honeybees, Apis mellifera L. Behav. Ecol. Sociobiol. 48:173–181.

    Article  Google Scholar 

  • Galizia, C.G. and Menzel, R. (2001) The role of glomeruli in the neural representation of odours: results from optical recording studies. J. Insect Physiol. 47: 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Gary, N.E. and Witherell, P.C. (1977) Distribution of foraging bees of 3 honey bee (hymenoptera-apidae) stocks located near onion and safflower fields. Environ. Entomol. 6: 785–788.

    Google Scholar 

  • Giray, T., Galindo-Cardona, A. and Oskay, D. (2007) Octopamine influences honey bee foraging preference. J. Insect Physiol. 53: 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M. (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193:801–824.

    Article  PubMed  Google Scholar 

  • Giurfa, M., Vorobyev, M., Kevan, P. and Menzel, R. (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J. Comp. Physiol. A 178: 699–709.

    Article  Google Scholar 

  • Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. and Menzel, R. (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J. Comp. Physiol. A 180: 235–243.

    Article  Google Scholar 

  • Granero, A.M., Sanz, J.M.G., Gonzalez, F.J.E., Vidal, J.L.M., Dornhaus, A., Ghani, J., Serrano, A.R. and Chittka, L. (2005) Chemical compounds of the foraging recruitment pheromone in bumblebees. Naturwissenschaften 92: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri, F., Schubert, M., Sandoz, J.C. and Giurfa, M. (2005) Perceptual and neural olfactory similarity in honeybees. Plos Biol. 3: 718–732.

    Article  CAS  Google Scholar 

  • Hempel de Ibarra, N. and Vorobyev, M. (2009) Flower patterns are adapted for detection by bees. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195: 319–323.

    Article  PubMed  Google Scholar 

  • Hempel de Ibarra, N., Giurfa, M. and Vorobyev, M. (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J. Comp. Physiol. A 187: 215–224.

    Article  CAS  Google Scholar 

  • Hosler, J.S., Buxton, K.L. and Smith, B.H. (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav. Neurosci. 114: 514–525.

    Article  PubMed  CAS  Google Scholar 

  • Irwin, R.E. and Adler, L.S. (2008) Nectar secondary compounds affect self-pollen transfer: Implications for female and male reproduction. Ecology 89: 2207–2217.

    Article  PubMed  Google Scholar 

  • Kacelnik, A., Houston, A.I. and Schmid-Hempel, P. (1986) Central-place foraging in honey bees: the effect of travel time and nectar flow on crop filling. Behav. Ecol. Sociobiol. 19: 19–24.

    Article  Google Scholar 

  • Kirchner, W.H. and Grasser, A. (1998) The significance of odor cues and dance language information for the food search behavior of honeybees (Hymenoptera: Apidae). J. Insect Behav. 11: 169–178.

    Article  Google Scholar 

  • Frisch, K.v. (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge.

    Google Scholar 

  • Laidlaw, H. and Page, R. (1997) Queen Rearing and Bee Breeding. Wicwas Press, Cheshire, CT.

    Google Scholar 

  • London-Shafir, I., Shafir, S. and Eisikowitch, D. (2003) Amygdalin in almond nectar and pollen – facts and possible roles. Plant Syst. Evol. 238: 87–95.

    Google Scholar 

  • Mackensen, O. and Nye, W.P. (1966) Selecting and breeding honeybees for collecting alfalfa pollen. J. Apic. Res. 5: 79–86.

    Google Scholar 

  • Marsh, B and Kacelnik, A. (2002) Framing effects and risky decisions in starlings. Proc. Natl. Acad. Sci. USA 99: 3352–3355.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, D.F. (1994) Sequential introduction of honey bee colonies for pear pollination. Acta Horticulturae 367: 267–269.

    Google Scholar 

  • Moffatt, L. and Nunez, J.A. (1997) Oxygen consumption in the foraging honeybee depends on the reward rate at the food source. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 167: 36–42.

    Article  CAS  Google Scholar 

  • Mustard, J.A., Edgar, E.A., Mazade, R.E., Wu, C., Lillvis, J.L. and Wright, G.A. (2008) Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol. Learn Mem. 90: 633–643.

    Article  CAS  Google Scholar 

  • Oldroyd, B.P. and Thompson, G.J. (2007) Behavioural genetics of the honey bee Apis mellifera, In: Advances in Insect Physiology. Academic, London, pp. 1–49.

    Google Scholar 

  • Page, R.E.J. and Robinson, G.E. (1991) The genetics of division of labour in honey bee colonies, In: Advances in Insect Physiology. Academic, London, pp. 117–169.

    Google Scholar 

  • Paldi, N., Zilber, S. and Shafir, S. (2003) Associative olfactory learning of honeybees to differential rewards in multiple contexts – Effect of odor component and mixture similarity. J. Chem. Ecol. 29: 2515–2538.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, D., Fietz, A., Hertel, H., Souza, J.d., Ventura, D.F. and Menzel, R. (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A 170: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Perez, S.M. and Waddington, K.D. (1996) Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36: 435–446.

    Google Scholar 

  • Pernal, S.F. and Currie, R.W. (2001) The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.). Behav. Ecol. Sociobiol. 51: 53–68.

    Article  Google Scholar 

  • Pernal, S.F. and Currie, R.W. (2002) Discrimination and preferences for pollen-based cues by foraging honeybees, Apis mellifera L. Anim. Behav. 63: 369–390.

    Article  Google Scholar 

  • Rains, G.C., Tomberlin, J.K. and Kulasiri, D. (2008) Using insect sniffing devices for detection. Trends Biotechnol. 26: 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Raveret-Richter, M. and Waddington, K.D. (1993) Past foraging experience influences honey bee dance behaviour. Anim. Behav. 46:123–128.

    Article  Google Scholar 

  • Sapir, G., Goldway, M., Shafir, S. and Stern, R.A. (2007) Multiple introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Black Diamond’ Japanese plum (Prunus salicina Lindl.). J. Hort. Sci. Biotechnol. 82: 590–596.

    Google Scholar 

  • Schmid-Hempel, P. (1987) Efficient nectar-collecting by honeybees I. Economic models. J. Anim. Ecol. 56: 209–218.

    Article  Google Scholar 

  • Schmid-Hempel, P., Kacelnik, A. and Houston, A.I. (1985) Honeybees maximize efficiency by not filling their crop. Behav. Ecol. Sociobiol. 17: 61–66.

    Article  Google Scholar 

  • Seeley, T.D. (1995) The Wisdom of the Hive. Harvard University Press, Cambridge.

    Google Scholar 

  • Shafir, S. (1994) Intransitivity of preferences in honey bees: support for ‘comparative’ evaluation of foraging options. Anim. Behav. 48: 55–67.

    Article  Google Scholar 

  • Shafir, S. (2000) Risk-sensitive foraging: the effect of relative variability. Oikos 88: 663–669.

    Article  Google Scholar 

  • Shafir, S., Wiegmann, D.D., Smith, B.H. and Real, L.A. (1999) Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Anim. Behav. 57: 1055–1061.

    Article  PubMed  Google Scholar 

  • Shafir, S., Waite, T.A. and Smith, B.H. (2002) Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 51: 180–187.

    Article  Google Scholar 

  • Shafir, S., Bechar, A. and Weber, E.U. (2003) Cognition-mediated coevolution – context-dependent evaluations and sensitivity of pollinators to variability in nectar rewards. Plant Syst. Evol. 238: 195–209.

    Google Scholar 

  • Shafir, S., Menda, G. and Smith, B.H. (2005) Caste-specific differences in risk sensitivity in honeybees, Apis mellifera. Anim. Behav. 69: 859–868.

    Article  Google Scholar 

  • Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M. and Elad, Y. (2006) Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur. J. Plant Pathol. 116: 119–128.

    Article  CAS  Google Scholar 

  • Shafir, S., Reich, T., Tsur, E., Erev, I. and Lotem, A. (2008) Perceptual accuracy and conflicting effects of certainty on risk-taking behaviour. Nature 453: 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, M.S. (2000) Quantitative analysis of risk sensitivity in honeybees (Apis mellifera) with variability in concentration and amount of reward. J. Exp. Psychol. Anim. Behav. Process. 26: 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, M.S., Couvillon, P.A. and Bitterman, M.E. (2001) Quantitative tests of an associative theory of risk-sensitivity in honeybees. J. Exp. Biol. 204: 565–573.

    PubMed  CAS  Google Scholar 

  • Shimanuki, H., Lehnert, T. and Stricker, M. (1967) Differential collection of cranberry pollen by honey bees. J. Econ. Entomol. 60: 1031–1033.

    Google Scholar 

  • Sleper, D. and Poehlman, J. (2006) Breeding Field Crops, Fifth Edition. Blackwell, Ames, Iowa.

    Google Scholar 

  • Stephens, D.W. and Krebs, J.R. (1986) Foraging Theory. Princeton University Press, Princeton.

    Google Scholar 

  • Stern, R.A., Eisikowitch, D. and Dag, A. (2001) Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hort. Sci. Biotechnol. 76: 17–23.

    Google Scholar 

  • Stern, R.A., Goldway, M., Zisovich, A.H., Shafir, S. and Dag, A. (2004) Sequential introduction of honeybee colonies increases crosspollination, fruit-set and yield of ‘Spadona’ pear (Pyrus communis L.). J. Hort. Sci. Biotechnol. 79: 652–658.

    Google Scholar 

  • Stern, R.A., Sapir, G., Shafir, S., Dag, A. and Goldway, M. (2007) The appropriate management of honey bee colonies for pollination of Rosaceae fruit trees in warm climates. Middle Eastern Russ. J. Plant. Sci. Biotechnol. 1: 13–19.

    Google Scholar 

  • von Frisch, K. (1967) The Dance Language and Orientation of the Bees. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Waddington, K.D. (1997) Foraging behavior of nectarivores and pollen collectors. Acta Horticulturae 437: 175–191.

    Google Scholar 

  • Waddington, K.D. (2001) Subjective evaluation and choice behavior by nectar- and pollen-collecting bees, In: L. Chittka and J.D. Thompson (eds.) Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution. Cambridge University Press, Cambridge, pp. 41–60.

    Google Scholar 

  • Waddington, K.D. and Gottlieb, N. (1990) Actual vs perceived profitability: a study of floral choice of honey bees. J. Insect Behav. 3: 429–441.

    Article  Google Scholar 

  • Weinstock, G.M., Robinson, G.E., Gibbs, R.A., Worley, K.C., Evans, J.D., Maleszka, R., Robertson, H.M., Weaver, D.B., Beye, M., Bork, P., Elsik, C.G., Hartfelder, K., Hunt, G.J., Zdobnov, E.M., Amdam, G.V., Bitondi, M.M.G., Collins, A.M., Cristino, A.S., Lattorff, H.M.G., Lobo, C.H., Moritz, R.F.A., Nunes, F.M.F., Page, R.E., Simoes, Z.L.P., Wheeler, D., Carninci, P., Fukuda, S., Hayashizaki, Y., Kai, C., Kawai, J., Sakazume, N., Sasaki, D., Tagami, M., Albert, S., Baggerman, G., Beggs, K.T., Bloch, G., Cazzamali, G., Cohen, M., Drapeau, M.D., Eisenhardt, D., Emore, C., Ewing, M.A., Fahrbach, S.E., Foret, S., Grimmelikhuijzen, C.J.P., Hauser, F., Hummon, A.B., Huybrechts, J., Jones, A.K., Kadowaki, T., Kaplan, N., Kucharski, R., Leboulle, G., Linial, M., Littleton, J.T., Mercer, A.R., Richmond, T.A., Rodriguez-Zas, S.L., Rubin, E.B., Sattelle, D.B., Schlipalius, D., Schoofs, L., Shemesh, Y., Sweedler, J.V., Velarde, R., Verleyen, P., Vierstraete, E., Williamson, M.R., Ament, S.A., Brown, S.J., Corona, M., Dearden, P.K., Dunn, W.A., Elekonich, M.M., Fujiyuki, T., Gattermeier, I., Gempe, T., Hasselmann, M., Kadowaki, T., Kage, E., Kamikouchi, A., Kubo, T., Kucharski, R., Kunieda, T., Lorenzen, M., Milshina, N.V., Morioka, M., Ohashi, K., Overbeek, R., Ross, C.A., Schioett, M., Shippy, T., Takeuchi, H., Toth, A.L., Willis, J.H., Wilson, M.J., Gordon, K.H.J, Letunic, I., Hackett, K., Peterson, J., Felsenfeld, A., Guyer, M., Solignac, M., Agarwala, R., Cornuet, J.M., Monnerot, M., Mougel, F., Reese, J.T., Vautrin, D., Gillespie, J.J., Cannone, J.J., Gutell, R.R., Johnston, J.S., Eisen, M.B., Iyer, V.N., Iyer, V., Kosarev, P., Mackey, A.J., Solovyev, V., Souvorov, A., Aronstein, K.A., Bilikova, K., Chen, Y.P., Clark, A.G., Decanini, L.I., Gelbart, W.M., Hetru, C., Hultmark, D., Imler, J.L., Jiang, H.B., Kanost, M., Kimura, K., Lazzaro, B.P., Lopez, D.L., Simuth, J., Thompson, G.J., Zou, Z., De Jong, P., Sodergren, E., Csuros, M., Milosavljevic, A., Osoegawa, K., Richards, S., Shu, C.L., Duret, L., Elhaik, E., Graur, D., Anzola, J.M., Campbell, K.S., Childs, K.L., Collinge, D., Crosby, M.A., Dickens, C.M., Grametes, L.S., Grozinger, C.M., Jones, P.L., Jorda, M., Ling, X., Matthews, B.B., Miller, J., Mizzen, C., Peinado, M.A., Reid, J.G., Russo, S.M., Schroeder, A.J., St Pierre, S.E., Wang, Y., Zhou, P.L., Jiang, H.Y., Kitts, P., Ruef, B., Venkatraman, A., Zhang, L., Aquino-Perez, G., Whitfield, C.W., Behura, S.K., Berlocher, S.H., Sheppard, W.S., Smith, D.R., Suarez, A.V., Tsutsui, N.D., Wei, X.H., Wheeler, D., Havlak, P., Li, B.S., Liu, Y., Sodergren, E., Jolivet, A., Lee, S., Nazareth, L.V., Pu, L.L., Thorn, R., Stolc, V., Newman, T., Samanta, M., Tongprasit, W.A., Claudianos, C., Berenbaum, M.R., Biswas, S., de Graaf, D.C., Feyereisen, R., Johnson, R.M., Oakeshott, J.G., Ranson, H., Schuler, M.A., Muzny, D., Chacko, J., Davis, C., Dinh, H., Gill, R., Hernandez, J., Hines, S., Hume, J., Jackson, L., Kovar, C., Lewis, L., Miner, G., Morgan, M., Nguyen, N., Okwuonu, G., Paul, H., Santibanez, J., Savery, G., Svatek, A., Villasana, D. and Wright, R. (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931–949.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharoni Shafir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shafir, S. (2010). Bee Cognition And Crop Pollination: Proven And Potential Applications. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_8

Download citation

Publish with us

Policies and ethics