Skip to main content

Regulation of the Cytoplasmic Actin Monomer Pool in Actin-based Motility

  • Chapter
  • First Online:
  • 1030 Accesses

Abstract

Actin-based motility is driven by spatially and temporally coordinated rapid actin polymerization. This relies on the precise regulation of the size, localization and dynamics of the cytoplasmic actin monomer pool by proteins that control different aspects of actin dynamics. In dynamic actin filament arrays, the “old” actin filaments are severed and depolymerized by ADF/cofilin and gelsolin family proteins, and the newly depolymerized actin monomers are subsequently recycled for new rounds of polymerization with the aid of actin monomer-binding proteins such as profilin and cyclase-associated protein. Furthermore, actin monomer sequestering proteins, such as twinfilin and β-thymosins control the size, nucleotide status, and dynamics of the actin monomer pool in cells. Actin polymerization at filament barbed ends is also controlled by capping proteins that “funnel” polymerization-competent actin monomers to a subset of filament ends at the sites of rapid actin assembly. In this chapter, we discuss the mechanisms by which these proteins control the cytoplasmic actin monomer pool and how their activities are regulated in cells to promote various actin-based motile processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Obinata T, Minamide LS, Bamburg JR (1996) Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J Cell Biol. 132:871–885.

    Article  PubMed  CAS  Google Scholar 

  • Agnew BJ, Minamide LS, Bamburg JR (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem. 270:17582–17587.

    Article  PubMed  CAS  Google Scholar 

  • Akin O, Mullins RD (2008) Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell. 133:841–851.

    Article  PubMed  CAS  Google Scholar 

  • Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 24:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 393:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Balcer HI, Goodman AL, Rodal AA, Smith E, Kugler J, Heuser JE, Goode BL (2003) Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr Biol. 13:2159–2169.

    Article  PubMed  CAS  Google Scholar 

  • Bamburg JR, Harris HE, Weeds AG (1980) Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 121:178–182.

    Article  PubMed  CAS  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9:364–370.

    Article  PubMed  CAS  Google Scholar 

  • Barrero RA, Umeda M, Yamamura S, Uchimiya H (2002) Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. Plant Cell. 14:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Baum B, Li W, Perrimon N (2000) A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr Biol. 10:964–973.

    Article  PubMed  CAS  Google Scholar 

  • Bertling E, Hotulainen P, Mattila PK, Matilainen T, Salminen M, Lappalainen P (2004) Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells. Mol Biol Cell. 15:2324–2334.

    Article  PubMed  CAS  Google Scholar 

  • Bertling E, Quintero-Monzon O, Mattila PK, Goode BL, Lappalainen P (2007) Mechanism and biological role of profilin-Srv2/CAP interaction. J Cell Sci. 120:1225–1234.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya N, Ghosh S, Sept D, Cooper JA (2006) Binding of myotrophin/V-1 to actin-capping protein: implications for how capping protein binds to the filament barbed end. J Biol Chem. 281:31021–31030.

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin L, Pollard TD, Mullins RD (2000) Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol. 10:1273–1282.

    Article  PubMed  CAS  Google Scholar 

  • Bobkov AA, Muhlrad A, Kokabi K, Vorobiev S, Almo SC, Reisler E (2002) Structural effects of cofilin on longitudinal contacts in F-actin. J Mol Biol. 323:739–750.

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Aszodi A, Hellebrand H, Berna A, Fassler R, Brandau O (2002) Genomic organization of profilin-III and evidence for a transcript expressed exclusively in testis. Gene. 283:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Bruck S, Huber TB, Ingham RJ, Kim K, Niederstrasser H, Allen PM, Pawson T, Cooper JA, Shaw AS. (2006) Identification of a novel inhibitory actin-capping protein binding motif in CD2-associated protein. J Biol Chem. 281:19196–19203.

    Article  PubMed  CAS  Google Scholar 

  • Burtnick LD, Koepf EK, Grimes J, Jones EY, Stuart DI, McLaughlin PJ Robinson RC (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell. 90:661–670.

    Article  PubMed  CAS  Google Scholar 

  • Burtnick LD, Urosev D, Irobi E, Narayan K, Robinson RC (2004) Structure of the N-terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF. EMBO J. 23: 2713–2722.

    Article  PubMed  CAS  Google Scholar 

  • Buss F, Temm-Grove C, Henning S, Jockusch BM (1992) Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil Cytoskeleton. 22:51–61.

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Marshall TW, Uetrecht AC, Schafer DA, Bear JE (2007) Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell. 128:915–929.

    Article  PubMed  CAS  Google Scholar 

  • Canton DA, Olsten ME, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA, Litchfield DW (2005) The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol Cell Biol. 25:3519–3534.

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 136:1307–1322.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 115:465–483.

    Article  PubMed  CAS  Google Scholar 

  • Chan C, Beltzner CC, Pollard TD (2009) Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol. 19:537–545.

    Article  PubMed  CAS  Google Scholar 

  • Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA (2000) Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol. 148:665–678.

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Liao WP, Lu Q, Wong WS, Wong PT (2007) Upregulation of dihydropyrimidinase-related protein 2, spectrin alpha II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats – a proteomics approach. Neurochem Int. 50:1078–1086.

    Article  PubMed  CAS  Google Scholar 

  • Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K, Dominguez R (2005) Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci. 102:16644–16649 http://www.ncbi.nlm.nih.gov/pubmed/16275905?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum.

    Article  PubMed  CAS  Google Scholar 

  • Cooley L, Verheyen E, Ayers K (1992) Chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell. 6:173–184.

    Article  Google Scholar 

  • Cooper JA, Sept D (2008) New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol. 267:183–206.

    Article  PubMed  CAS  Google Scholar 

  • DesMarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci. 118:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol. 6:1180–1188.

    Article  PubMed  CAS  Google Scholar 

  • Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, Berhoerster K, Kreienkamp HJ, Milanesi F, Di Fiore PP, Ciliberto A, Stradal TE, Scita G (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8:1337–1347.

    Article  PubMed  CAS  Google Scholar 

  • Dodatko T, Fedorov AA, Grynberg M, Patskovsky Y, Rozwarski DA, Jaroszewski L, Aronoff-Spencer E, Kondraskina E, Irving T, Godzik A, Almo SC (2004) Crystal structure of the actin binding domain of the cyclase-associated protein. Biochemistry. 43:10628–10641.

    Article  PubMed  CAS  Google Scholar 

  • El Sayegh TY, Arora PD, Ling K, Laschinger C, Janmey PA, Anderson RA, McCulloch CA (2007) Phosphatidylinositol-4,5 bisphosphate produced by PIP5KIgamma regulates gelsolin, actin assembly, and adhesion strength of N-cadherin junctions. Mol Biol Cell. 18: 3026–3038.

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, Boone C (1997) Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science. 276:118–122.

    Article  PubMed  CAS  Google Scholar 

  • Falck S, Paavilainen VO, Wear MA, Grossmann JG, Cooper JA, Lappalainen P (2004) Biological role and structural mechanism of twinfilin-capping protein interaction. EMBO J. 23:3010–3019.

    Article  PubMed  CAS  Google Scholar 

  • Fedor-Chaiken M, Deschenes RJ, Broach JR (1990) SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell. 61:329–340.

    Article  PubMed  CAS  Google Scholar 

  • Field J, Nikawa J, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol. 8:2159–2165.

    PubMed  CAS  Google Scholar 

  • Field J, Vojtek A, Ballester R, Bolger G, Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli T, Powers S (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein Cell. 61:319–327.

    CAS  Google Scholar 

  • Fischer RS, Fritz-Six KL, Fowler VM (2003) Pointed-end capping by tropomodulin3 negatively regulates endothelial cell motility. J Cell Biol. 161:371–380.

    Article  PubMed  CAS  Google Scholar 

  • Fischer RS, Yarmola EG, Weber KL, Speicher KD, Speicher DW, Bubb MR, Fowler VM (2006) Tropomodulin 3 binds to actin monomers. J Biol Chem. 281:36454–36465.

    Article  PubMed  CAS  Google Scholar 

  • Fowler VM (1987) Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J Biol Chem. 262:12792–12800.

    PubMed  CAS  Google Scholar 

  • Fowler VM, Greenfield NJ, Moyer J (2003) Tropomodulin contains two actin filament pointed end-capping domains. J Biol Chem. 278:40000–40009.

    Article  PubMed  CAS  Google Scholar 

  • Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol. 183:865–879.

    Article  PubMed  CAS  Google Scholar 

  • Freeman NL, Chen Z, Horenstein J, Weber A, Field J (1995) An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J Biol Chem. 270:5680–5685.

    Article  PubMed  CAS  Google Scholar 

  • Freeman NL, Lila T, Mintzer KA, Chen Z, Pahk AJ, Ren R, Drubin DG, Field J (1996) A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol Cell Biol. 16:548–556.

    PubMed  CAS  Google Scholar 

  • Fritz-Six KL, Cox PR, Fischer RS, Xu B, Gregorio CC, Zoghbi HY, Fowler VM (2003) Aberrant myofibril assembly in tropomodulin1 null mice leads to aborted heart development and embryonic lethality. J Cell Biol. 163:1033–1044.

    Article  PubMed  CAS  Google Scholar 

  • Galkin VE, Orlova A, Lukoyanova N, Wriggers W, Egelman EH (2001) Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J Cell Biol. 153:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi M, Achard V, Blanchoin L, Goode BL (2009) Coronin switches roles in actin disassembly depending on the nucleotide state of actin. Mol Cell. 34:364–374.

    Article  PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Weber K (1981) Calcium control of microfilaments: uncoupling of the F-actin-severing and -bundling activity of villin by limited proteolysis in vitro. Proc Natl Acad Sci. 78:2810–2814.

    Article  PubMed  CAS  Google Scholar 

  • Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 7:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD (1990) The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science. 247:1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Goode BL, Drubin DG, Lappalainen P (1998) Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J Cell Biol. 142:723–733.

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk VY, Nosworthy NJ, Robson SA, Bains NP, Maciejewski MW, Dos Remedios CG, King GF (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Mol Cell. 24:511–522.

    Article  PubMed  CAS  Google Scholar 

  • Haarer BK, Lillie SH, Adams AE, Magdolen V, Bandlow W, Brown SS (1990) Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J Cell Biol. 110:105–114.

    Article  PubMed  CAS  Google Scholar 

  • Hart MC, Cooper JA (1999) Vertebrate isoforms of actin capping protein beta have distinct functions in vivo. J Cell Biol. 147:1287–1298.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins M, Pope B, Maciver SK, Weeds AG (1993) Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry. 32:9985–9993.

    Article  PubMed  CAS  Google Scholar 

  • Hayden SM, Miller PS, Brauweiler A, Bamburg JR (1993) Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry. 32:9994–10004.

    Article  PubMed  CAS  Google Scholar 

  • Helfer E, Nevalainen EM, Naumanen P, Romero S, Didry D, Pantaloni D, Lappalainen P, Carlier MF (2006) Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: implications in motility. EMBO J. 25:1184–1195.

    Article  PubMed  CAS  Google Scholar 

  • Hertzog M, Yarmola EG, Didry D, Bubb MR, Carlier MF (2002) Control of actin dynamics by proteins made of beta-thymosin repeats: the actobindin family. J Biol Chem. 277:14786–14792.

    Article  PubMed  CAS  Google Scholar 

  • Hertzog M, van Heijenoort C, Didry D, Gaudier M, Coutant J, Gigant B, Didelot G, Préat T, Knossow M, Guittet E, Carlier MF (2004) The beta-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell. 117:611–263.

    Article  PubMed  CAS  Google Scholar 

  • Hopmann R, Cooper JA, Miller KG (1996) Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila. J Cell Biol. 133:1293–1305.

    Article  PubMed  CAS  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell. 16:649–664.

    Article  PubMed  CAS  Google Scholar 

  • Hubberstey AV, Mottillo EP (2002) Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization. FASEB J. 16:487–499.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa JH, Mullins RD (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol. 17(5):395–406.

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature. 325:362–364.

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 7:404–414.

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Galletta BJ, Schmidt KO, Chang FS, Blumer KJ, Cooper JA (2006) Actin-based motility during endocytosis in budding yeast. Mol Biol Cell. 17:1354–1363.

    Article  PubMed  CAS  Google Scholar 

  • Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA. (2007) Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem. 28:5871–5879.

    Google Scholar 

  • Kiuchi T, Ohashi K, Kurita S, Mizuno K (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol. 177:465–476.

    Article  PubMed  CAS  Google Scholar 

  • Kostyukova AS (2008) Tropomodulins and tropomodulin/tropomyosin interactions. Cell Mol Life Sci. 65:563–569.

    Article  PubMed  CAS  Google Scholar 

  • Ksiazek D, Brandstetter H, Israel L, Bourenkov GP, Katchalova G, Janssen KP, Bartunik HD, Noegel AA, Schleicher M, Holak TA (2003) Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. Structure. 11:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • Kueh HY, Brieher WM, Mitchison TJ (2008) Dynamic stabilization of actin filaments. Proc Natl Acad Sci. 105:16531–16536.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JR, Pollard TD (2007) Single molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins. J Biol Chem. 282:28014–28024.

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C (2002) Mutational analysis of human profilin I reveals a second PI(4, 5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC Biochem. 3:12.

    Article  PubMed  Google Scholar 

  • Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature. 388:78–82.

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J. 16:5520–5530.

    Article  PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 314:472–474.

    Article  PubMed  CAS  Google Scholar 

  • Leyman S, Sidani M, Ritsma L, Waterschoot D, Eddy R, Dewitte D, Debeir O, Decaestecker C, Vandekerckhove J, van Rheenen J, Ampe C, Condeelis J, Van Troys M (2009) Unbalancing the PI(4, 5)P2-Cofilin Interaction Impairs Cell Steering. Mol Biol Cell. 20:4509–4523.

    Article  CAS  Google Scholar 

  • Lila T, Drubin DG (1997) Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol Biol Cell. 8:367–385.

    PubMed  CAS  Google Scholar 

  • Littlefield R, Almenar-Queralt A, Fowler VM (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol. 3:544–551.

    Article  PubMed  CAS  Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 401:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Low TL, Hu SK, Goldstein AL (1981) Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci. 78:1162–1166.

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Witke W, Kwiatkowski DJ, Kosik KS (1997) Delayed retraction of filopodia in gelsolin null mice. J Cell Biol. 13:1279–1287.

    Article  Google Scholar 

  • Maciver SK, Weeds AG (1994) Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett. 347:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Magdolen V, Oechsner U, Muller G, Bandlow W (1988) The intron-containing gene for yeast profilin (PFY) encodes a vital function. Mol Cell Biol. 8:5108–5115.

    PubMed  CAS  Google Scholar 

  • Mahoney NM, Janmey PA, Almo SC (1997) Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nat Struct Biol. 4:953–960.

    Article  PubMed  CAS  Google Scholar 

  • Mannherz HG, Hannappel E (2009) The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskeleton. 66:839–581.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Obinata T (1965) Presence of beta-actinin in the soluble fraction of the muscle cells of the chick embryo. J Biochem. 57:575–577.

    PubMed  CAS  Google Scholar 

  • Mattila PK, Salminen M, Yamashiro T, Lappalainen P (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem. 278:8452–8459.

    Article  PubMed  CAS  Google Scholar 

  • Mattila PK, Quintero-Monzon O, Kugler J, Moseley JB, Almo SC, Lappalainen P, Goode BL (2004) A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein. Mol Biol Cell. 15:5158–5171.

    Article  PubMed  CAS  Google Scholar 

  • McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 138:771–781.

    Article  PubMed  CAS  Google Scholar 

  • McGough A, Chiu W (1999) ADF/cofilin weakens lateral contacts in the actin filament. J Mol Biol. 291:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell. 118:363–373.

    Article  PubMed  CAS  Google Scholar 

  • Menna E, Disanza A, Cagnoli C, Schenk U, Gelsomino G, Frittoli E, Hertzog M, Offenhauser N, Sawallisch C, Kreienkamp HJ, Gertler FB, Di Fiore PP, Scita G, Matteoli M (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol. 7:e1000138.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Yahara I (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci. 115:1591–1601.

    PubMed  CAS  Google Scholar 

  • Moseley JB, Okada K, Balcer HI, Kovar DR, Pollard TD, Goode BL (2006) Twinfilin is an actin-filament-severing protein and promotes rapid turnover of actin structures in vivo. J Cell Sci. 119:1547–1557.

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Ma Q, Wang H, Chumnarnsilpa S, Lee WL, Larsson M, Kannan B, Hernandez-Valladares M, Burtnick LD, Robinson RC (2009) Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci. 106:13713–13718.

    Article  PubMed  CAS  Google Scholar 

  • Narita A, Takeda S, Yamashita A, Maéda Y (2006) Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study. EMBO J. 25:5626–5633.

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen EM, Skwarek-Maruszewska A, Braun A, Moser M, Lappalainen P (2009) Two biochemically distinct and tissue-specific twinfilin isoforms are generated from the mouse Twf2 gene by alternative promoter usage. Biochem J. 417:593–600.

    Article  PubMed  CAS  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 108:233–246.

    Article  PubMed  CAS  Google Scholar 

  • Noegel AA, Rivero F, Albrecht R, Janssen KP, Kohler J, Parent CA, Schleicher M (1999) Assessing the role of the ASP56/CAP homologue of Dictyostelium discoideum and the requirements for subcellular localization. J Cell Sci. 112:3195–3203.

    PubMed  CAS  Google Scholar 

  • Obermann H, Raabe I, Balvers M, Brunswig B, Schulze W, Kirchhoff C (2005) Novel testis-expressed profilin IV associated with acrosome biogenesis and spermatid elongation. Mol Hum Reprod. 11:53–64.

    Article  PubMed  CAS  Google Scholar 

  • Ojala PJ, Paavilainen V, Lappalainen P (2001) Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry. 40:15562–15569.

    Article  PubMed  CAS  Google Scholar 

  • Ojala PJ, Paavilainen VO, Vartiainen MK, Tuma R, Weeds AG, Lappalainen P (2002) The two ADF-H domains of twinfilin play functionally distinct roles in interactions with actin monomers. Mol Biol Cell. 13:3811–3821.

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Minami N, Abe H, Obinata T (1994) Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem. 269:15280–15286.

    PubMed  CAS  Google Scholar 

  • Ono S (2003) Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry. 42:13363–13370.

    Article  PubMed  CAS  Google Scholar 

  • Paavilainen VO, Bertling E, Falck S, Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol. 14:386–394.

    Article  PubMed  CAS  Google Scholar 

  • Paavilainen VO, Hellman M, Helfer E, Bovellan M, Annila A, Carlier MF, Permi P, Lappalainen P (2007) Structural basis and evolutionary origin of actin filament capping by twinfilin. Proc Natl Acad Sci. 104:3113–3118.

    Article  PubMed  CAS  Google Scholar 

  • Paavilainen VO, Oksanen E, Goldman A, Lappalainen P (2008) Structure of the actin-depolymerizing factor homology domain in complex with actin. J Cell Biol. 182:51–59.

    Article  PubMed  CAS  Google Scholar 

  • Palmgren S, Ojala PJ, Wear MA, Cooper JA, Lappalainen P (2001) Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol. 155:251–260.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell. 75:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin-based motility. Science. 292:1502–1506.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature. 436:78–86.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 55:987–1035.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 29:545–756.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Quintero-Monzon O, Jonasson EM, Bertling E, Talarico L, Chaudhry F, Sihvo M, Lappalainen P, Goode BL (2009) Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover. J Biol Chem. 284:10923–10934.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14:1583–1589.

    PubMed  CAS  Google Scholar 

  • Ressad F, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D, Carlier MF (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem. 273:20894–20902.

    Article  PubMed  CAS  Google Scholar 

  • Rogers SL, Wiedemann U, Stuurman N, Vale RD (2003) Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol. 162:1079–88.

    Article  PubMed  CAS  Google Scholar 

  • Safer D, Elzinga M, Nachmias VT (1991) Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032.

    PubMed  CAS  Google Scholar 

  • Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol. 135:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature. 365:810–816.

    Article  PubMed  CAS  Google Scholar 

  • Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D (2004) Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci. 61:2614–2623.

    Article  PubMed  CAS  Google Scholar 

  • Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M, Di Fiore PP (2001) An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol. 154:1031–1044.

    Article  PubMed  CAS  Google Scholar 

  • Skare P, Karlsson R (2002) Evidence for two interaction regions for phosphatidylinositol(4, 5)-bisphosphate on mammalian profilin I. FEBS Lett. 522:119–124.

    Article  PubMed  CAS  Google Scholar 

  • Southwick FS, DiNubile MJ (1986) Rabbit alveolar macrophages contain a Ca2+-sensitive, 41,000-dalton protein which reversibly blocks the “barbed” ends of actin filaments but does not sever them. J Biol Chem. 261:14191–14195.

    PubMed  CAS  Google Scholar 

  • Swiston J, Hubberstey A, Yu G, Young D (1995) Differential expression of CAP and CAP2 in adult rat tissues. Gene. 165:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K (2001) Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 12:1131–1145.

    PubMed  CAS  Google Scholar 

  • van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, Yip SC, Backer JM, Eddy RJ, Condeelis JS (2007) EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol. 179:1247–1259.

    Article  PubMed  CAS  Google Scholar 

  • Vartiainen MK, Mustonen T, Mattila PK, Ojala PJ, Thesleff I, Partanen J, Lappalainen P (2002) The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol Biol Cell. 13:183–194.

    Article  PubMed  CAS  Google Scholar 

  • Wahlström G, Vartiainen MK, Yamamoto L, Mattila PK, Lappalainen P, Heino TI (2001) Twinfilin is required for actin-dependent developmental processes in Drosophila. J Cell Biol. 155:787–795.

    Article  PubMed  Google Scholar 

  • Wear MA, Yamashita A, Kim K, Maéda Y, Cooper JA (2003) How capping protein binds the barbed end of the actin filament. Curr Biol. 13:1531–1537.

    Article  PubMed  CAS  Google Scholar 

  • Weber A, Pennise CR, Fowler VM (1999) Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADP.P(i)-actin to ADP-actin at all pointed filament ends. J Biol Chem. 274:34637–34645.

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C, Mann M (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17:967–976.

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Li W, Kwiatkowski DJ, Southwick FS (2001a) Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J Cell Biol. 154:775–784.

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ (2001b) Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci. 98:3832–3836.

    Article  PubMed  CAS  Google Scholar 

  • Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Wolven AK, Belmont LD, Mahoney NM, Almo SC, Drubin DG (2000) In vivo importance of actin nucleotide exchange catalyzed by profiling. J Cell Biol. 150:895–904.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Maeda K, Maéda Y (2003) Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J. 22:1529–1538.

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Pring M, Wear MA, Huang M, Cooper JA, Svitkina TM, Zigmond SH (2005) Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell. 9:209–221.

    Article  PubMed  CAS  Google Scholar 

  • Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 28:583–586.

    Article  Google Scholar 

  • Yonezawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem. 260:14410–14412.

    PubMed  CAS  Google Scholar 

  • Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem. 265:8382–8386.

    PubMed  CAS  Google Scholar 

  • Yonezawa N, Homma Y, Yahara I, Sakai H, Nishida E (1991) A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin. J Biol Chem. 266:17218–17221.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Lappalainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Lappalainen, P., Makkonen, M., Zhao, H. (2010). Regulation of the Cytoplasmic Actin Monomer Pool in Actin-based Motility. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_9

Download citation

Publish with us

Policies and ethics