Skip to main content

Endocytic Control of Actin-based Motility

  • Chapter
  • First Online:
Actin-based Motility

Abstract

Endocytosis and recycling are emerging as essential components of the wiring enabling cells to perceive extracellular signals and resolve them in a temporally and spatially controlled fashion, directly influencing not only the duration and intensity of the signaling output, but also its correct location. One process, which requires the precise resolution of spatial information, is actin-based cell motility. This is achieved by coordinating membrane traffic, cell substrate adhesion, and actin remodeling in order to generate propulsive forces responsible for the formation of a diverse set of polarized migratory protrusions, the first steps of cell locomotion. Here, we will discuss how prototypical endocytic molecules control actin dynamics, frequently by linking the core machinery of actin polymerization to the plasma membrane. We will further discuss how endocytosis and recycling ensure spatial restriction of signaling to actin dynamics, thus enabling cells to migrate in response to different extracellular stimuli and in diverse microenvironments adopting diverse motile strategies, which have important implications in relevant physiological and pathological processes, first and foremost cancer cell invasion and dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA (2007) Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9: 1381–1391.

    Article  PubMed  CAS  Google Scholar 

  • Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122: 1947–1953.

    Article  PubMed  CAS  Google Scholar 

  • Birtwistle MR, Kholodenko BN (2009) Endocytosis and signalling: a meeting with mathematics. Mol Oncol. 3(4): 308–320.

    Article  PubMed  CAS  Google Scholar 

  • Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, et al. (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11: 613–627.

    Article  PubMed  CAS  Google Scholar 

  • Boldajipour B, Raz E (2007) What is left behind – quality control in germ cell migration. Sci STKE 2007: pe16.

    Google Scholar 

  • Bretscher MS (1983) Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells. Proc Natl Acad Sci USA 80: 454–458.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS, Aguado-Velasco C (1998) EGF induces recycling membrane to form ruffles. Curr Biol 8: 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS, Aguado-Velasco C (1998) Membrane traffic during cell locomotion. Curr Opin Cell Biol 10: 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9: 887–901.

    Article  PubMed  CAS  Google Scholar 

  • Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ (2001) The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 276: 29792–29797.

    Article  PubMed  CAS  Google Scholar 

  • Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5: 647–657.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood DA (2004) Integrin activation. J Cell Sci 117: 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9: 2595–2609.

    PubMed  CAS  Google Scholar 

  • Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, et al. (2008) Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 183: 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Caswell PT, Norman JC (2006) Integrin trafficking and the control of cell migration. Traffic 7: 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Caswell PT, Spence HJ, Parsons M, White DP, Clark K, et al. (2007) Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13: 496–510.

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Cosen-Binker LI, Kapus A (2006) Cortactin: the gray eminence of the cytoskeleton. Physiology (Bethesda) 21: 352–361.

    Article  CAS  Google Scholar 

  • Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915–934.

    Article  PubMed  CAS  Google Scholar 

  • De Donatis A, Comito G, Buricchi F, Vinci MC, Parenti A, et al. (2008) Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis. J Biol Chem 283: 19948–19956.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RG, et al. (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303: 839–842.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, et al. (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7: 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, et al. (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4: 232–239.

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, et al. (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9: 1347–1359.

    Article  PubMed  CAS  Google Scholar 

  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5: 410–421.

    Article  PubMed  CAS  Google Scholar 

  • Disanza A, Frittoli E, Palamidessi A, Scita G (2009) Endocytosis and spatial restriction of cell signaling. Mol Oncol. 3(4): 280–296.

    Article  PubMed  CAS  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78: 857–902.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG (2005) Arfs, phosphoinositides and membrane traffic. Biochem Soc Trans 33: 1276–1278.

    Article  PubMed  CAS  Google Scholar 

  • Fan GH, Lapierre LA, Goldenring JR, Sai J, Richmond A (2004) Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol Biol Cell 15: 2456–2469.

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Perera R, Roux A, Spasov K, Destaing O, et al. (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132: 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y (2002) Mechanistics of amoeboid locomotion: signal to forces. Cell Biol Int 26: 933–944.

    Article  PubMed  Google Scholar 

  • Gallop JL, McMahon HT (2005) BAR domains and membrane curvature: bringing your curves to the BAR. Biochem Soc Symp: 223–231.

    Google Scholar 

  • Garcia GL, Parent CA (2008) Signal relay during chemotaxis. J Microsc 231: 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Gareus R, Di Nardo A, Rybin V, Witke W (2006) Mouse profilin 2 regulates endocytosis and competes with SH3 ligand binding to dynamin 1. J Biol Chem 281: 2803–2811.

    Article  PubMed  CAS  Google Scholar 

  • Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O, et al. (2007) Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128: 561–575.

    Article  PubMed  CAS  Google Scholar 

  • Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Goode BL, Rodal AA, Barnes G, Drubin DG (2001) Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol 153: 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, et al. (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77: 537–549.

    Article  PubMed  CAS  Google Scholar 

  • Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119: 1469–1475.

    Article  PubMed  CAS  Google Scholar 

  • Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, et al. (2001) Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 3: 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

    Article  PubMed  CAS  Google Scholar 

  • Jekely G, Sung HH, Luque CM, Rorth P (2005) Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 9: 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M (2008) Taking apart the endocytic machinery. J Cell Biol 180: 1059–1060.

    Article  PubMed  CAS  Google Scholar 

  • Kessels MM, Engqvist-Goldstein AE, Drubin DG (2000) Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Mol Biol Cell 11: 393–412.

    PubMed  CAS  Google Scholar 

  • Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B (2001) Mammalian Abp1, a signalresponsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153: 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Kessels MM, Qualmann B (2006) Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J Biol Chem 281: 13285–13299.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs EM, Makar RS, Gertler FB (2006) Tuba stimulates intracellular N-WASP-dependent actin assembly. J Cell Sci 119: 2715–2726.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan KS, Rikhy R, Rao S, Shivalkar M, Mosko M, et al. (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin- dependent synaptic vesicle recycling. Neuron 30: 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Kruchten AE, McNiven MA (2006) Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119: 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  • Krueger EW, Orth JD, Cao H, McNiven MA (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14: 1085–1096.

    Article  PubMed  CAS  Google Scholar 

  • Kucik DF, Elson EL, Sheetz MP (1990) Cell migration does not produce membrane flow. J Cell Biol 111: 1617–1622.

    Article  PubMed  CAS  Google Scholar 

  • Langevin J, Morgan MJ, Sibarita JB, Aresta S, Murthy M, et al. (2005) Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev Cell 9: 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Lanzetti L, Palamidessi A, Areces L, Scita G, Di Fiore PP (2004) Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88: 489–513.

    Article  PubMed  CAS  Google Scholar 

  • Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6: 112–126.

    Article  PubMed  CAS  Google Scholar 

  • Lee E, De Camilli P (2002) Dynamin at actin tails. Proc Natl Acad Sci USA 99: 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yue P, Artym VV, Mueller SC, Guo W (2009) The Role of the Exocyst in MMP Secretion and Actin Dynamics during Tumor Cell Invadopodia Formation. Mol Biol Cell. 20(16): 3763–3771.

    Article  PubMed  CAS  Google Scholar 

  • Mammoto A, Ohtsuka T, Hotta I, Sasaki T, Takai Y (1999) Rab11BP/Rabphilin-11, a downstream target of rab11 small G protein implicated in vesicle recycling. J Biol Chem 274: 25517–25524.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F (2005) Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 15: 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8: 603–612.

    Article  PubMed  CAS  Google Scholar 

  • McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, et al. (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, et al. (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118: 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Micheva KD, Kay BK, McPherson PS (1997) Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J Biol Chem 272: 27239–27245.

    Article  PubMed  CAS  Google Scholar 

  • Minina S, Reichman-Fried M, Raz E (2007) Control of receptor internalization, signaling level, and precise arrival at the target in guided cell migration. Curr Biol 17: 1164–1172.

    Article  PubMed  CAS  Google Scholar 

  • Mooren OL, Kotova TI, Moore AJ, Schafer DA (2009) Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem. 284(36): 23995–24005.

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, et al. (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4: 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Mundigl O, Ochoa GC, David C, Slepnev VI, Kabanov A, et al. (1998) Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J Neurosci 18: 93–103.

    PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, et al. (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150: 377–389.

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, Krueger EW, Cao H, McNiven MA (2002) The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci USA 99: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, McNiven MA (2003) Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, et al. (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98: 4385–4390.

    Article  PubMed  CAS  Google Scholar 

  • Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, et al. (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134: 135–147.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, et al. (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436: 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Pellinen T, Ivaska J (2006) Integrin traffic. J Cell Sci 119: 3723–3731.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422: 741–745.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147.

    Article  PubMed  CAS  Google Scholar 

  • Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, et al. (2003) ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 163: 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Prigozhina NL, Waterman-Storer CM (2006) Decreased polarity and increased random motility in PtK1 epithelial cells correlate with inhibition of endosomal recycling. J Cell Sci 119: 3571–3582.

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci 112: 855–866.

    PubMed  CAS  Google Scholar 

  • Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, et al. (2007) HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 67: 5275–5284.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay AG, Marshall JF, Hart IR (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26: 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2004) Guidance of primordial germ cell migration. Curr Opin Cell Biol 16: 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, et al. (2006) RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26: 727–734.

    Article  PubMed  CAS  Google Scholar 

  • Salazar MA, Kwiatkowski AV, Pellegrini L, Cestra G, Butler MH, et al. (2003) Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J Biol Chem 278: 49031–49043.

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, et al. (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135: 510–523.

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA (2004) Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5: 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, et al. (2002) Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 12: 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  • Schlunck G, Damke H, Kiosses WB, Rusk N, Symons MH, et al. (2004) Modulation of Rac localization and function by dynamin. Mol Biol Cell 15: 256–267.

    Article  PubMed  CAS  Google Scholar 

  • Schmoranzer J, Kreitzer G, Simon SM (2003) Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J Cell Sci 116: 4513–4519.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Sable JE, Dobereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35: 417–434.

    Article  PubMed  CAS  Google Scholar 

  • Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, et al. (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A (2004) Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol 16: 392–399.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315: 683–696.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A, von Zastrow M (2009) Endocytosis and signaling: intertwining molecular networks. Nat Rev Mol Cell Biol 10(9): 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Spiczka KS, Yeaman C (2008) Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration. J Cell Sci 121: 2880–2891.

    Article  PubMed  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18: 4–10.

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5: 595–609.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, et al. (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Thomas GJ, Nystrom ML, Marshall JF (2006) Alphavbeta6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med 35: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Traynor D, Kay RR (2007) Possible roles of the endocytic cycle in cell motility. J Cell Sci 120: 2318–2327.

    Article  PubMed  CAS  Google Scholar 

  • Unsworth KE, Mazurkiewicz P, Senf F, Zettl M, McNiven M, et al. (2007) Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell Microbiol 9: 438–449.

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD, Vu ND (1995) Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. J Biol Chem 270: 21758–21764.

    Article  PubMed  CAS  Google Scholar 

  • Wessels D, Reynolds J, Johnson O, Voss E, Burns R, et al. (2000) Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J Cell Sci 113 (Pt 1): 21–36.

    PubMed  CAS  Google Scholar 

  • Wigge P, McMahon HT (1998) The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci 21: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, et al. (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. Embo J 17: 967–976.

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Friedl P (2006) Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol 154 Suppl 1: 11–15.

    Article  Google Scholar 

  • Yang C, Huang M, DeBiasio J, Pring M, Joyce M, et al. (2000) Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol 150: 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Zelhof AC (2002) Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Bin-Amphiphysin-Rvsp. Traffic 3: 452–460.

    Article  PubMed  CAS  Google Scholar 

  • Zuo X, Zhang J, Zhang Y, Hsu SC, Zhou D, et al. (2006) Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat Cell Biol 8: 1383–1388.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologise to all those colleagues whose primary references or important discoveries could not be properly acknowledged for lack of space. The authors of this review are supported by grants from: AIRC (Associazione Italiana Ricerca sul Cancro), European Community (VI Framework) and PRIN2007 (progetti di ricerca di interesse nazionale). F.T and A.D. are supported by FIRC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Scita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Disanza, A. et al. (2010). Endocytic Control of Actin-based Motility. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_3

Download citation

Publish with us

Policies and ethics