Skip to main content

Coupling Membrane Dynamics to Actin Polymerization

  • Chapter
  • First Online:
Actin-based Motility
  • 1080 Accesses

Abstract

WASP/WAVE family proteins are important regulators of the Arp2/3 complex, which causes exponential growth of actin filaments. WASP/WAVE proteins mediate actin polymerization for both cellular protrusions, such as filopodia and lamellipodia, and invaginations, such as coated pits for endocytosis. However, it had been unclear how the direction of actin polymerization for these topologically different structures is precisely regulated. Recently, the BAR domain superfamily members, which contain membrane-deforming or membrane-adaptor domains, were found to interact with the WASP/WAVE family proteins. These membrane-deforming or membrane-adaptor domains contain BAR, EFC/F-BAR, and IMD/I-BAR domains, which induce membrane invaginations or membrane protrusions. Due to the various geometries of the membranes bound by the BAR domain superfamily members, these proteins could connect specific membrane structures to actin filaments, mediated by the WASP/WAVE family proteins and the Arp2/3 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Kheir, W., Isaac, B., Yamaguchi, H., and Cox, D. (2008). Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci 121: 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Aboulaich, N., Vainonen, J.P., Stralfors, P., and Vener, A.V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Bastiani, M., Liu, L., Hill, M.M., Jedrychowski, M.P., Nixon, S.J., Lo, H.P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M.R., Gygi, S.P., Vinten, J., Walser, P.J., North, K.N., Hancock, J.F., Pilch, P.F., and Parton, R.G. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185: 1259–1273.

    Article  PubMed  CAS  Google Scholar 

  • Bigay, J., Gounon, P., Robineau, S., and Antonny, B. (2003). Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426: 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Bompard, G., Sharp, S.J., Freiss, G., and Machesky, L.M. (2005). Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118: 5393–5403.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, L.A., Svitkina, T.M., Vignjevic, D., Theriot, J.A., and Borisy, G.G. (2001). Dendritic organization of actin comet tails. Curr Biol 11: 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, G.J., and McMahon, H.T. (2009). Mechanisms of Endocytosis. Annu Rev Biochem.

    Google Scholar 

  • Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., Schedl, A., Haller, H., and Kurzchalia, T.V. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293: 2449–2452.

    Article  PubMed  CAS  Google Scholar 

  • Ford, M.G., Mills, I.G., Peter, B.J., Vallis, Y., Praefcke, G.J., Evans, P.R., and McMahon, H.T. (2002). Curvature of clathrin-coated pits driven by epsin. Nature 419: 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Frost, A., Perera, R., Roux, A., Spasov, K., Destaing, O., Egelman, E.H., De Camilli, P., and Unger, V.M. (2008). Structural basis of membrane invagination by F-BAR domains. Cell 132: 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K., and Ogawa, K. (1992). Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119: 1507–1513.

    Article  PubMed  Google Scholar 

  • Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H., Jr., Kneitz, B., Edelmann, W., and Lisanti, M.P. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276: 21425–21433.

    Article  PubMed  CAS  Google Scholar 

  • Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J., Evans, P.R., Langen, R., and McMahon, H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25: 2898–2910.

    Article  PubMed  CAS  Google Scholar 

  • Govind, S., Kozma, R., Monfries, C., Lim, L., and Ahmed, S. (2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 152: 579–594.

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger, E.D., Kessels, M.M., and Qualmann, B. (2003). Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4: 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, C.G., Bright, N.A., Howard, G., and Nichols, B.J. (2009). SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11: 807–814.

    Google Scholar 

  • Hartig, S.M., Ishikura, S., Hicklen, R.S., Feng, Y., Blanchard, E.G., Voelker, K.A., Pichot, C.S., Grange, R.W., Raphael, R.M., Klip, A., and Corey, S.J. (2009). The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 122: 2283–2291.

    Article  PubMed  CAS  Google Scholar 

  • Henne, W.M., Kent, H.M., Ford, M.G., Hegde, B.G., Daumke, O., Butler, P.J., Mittal, R., Langen, R., Evans, P.R., and McMahon, H.T. (2007). Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15: 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. (1980). Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol 84: 560–583.

    Article  PubMed  CAS  Google Scholar 

  • Hill, M.M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S.J., Walser, P., Abankwa, D., Oorschot, V.M., Martin, S., Hancock, J.F., and Parton, R.G. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Ho, H.Y., Rohatgi, R., Lebensohn, A.M., Le, M., Li, J., Gygi, S.P., and Kirschner, M.W. (2004). Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118: 203–216.

    Article  PubMed  CAS  Google Scholar 

  • Hori, K., Konno, D., Maruoka, H., and Sobue, K. (2003). MALS is a binding partner of IRSp53 at cell-cell contacts. FEBS Lett 554: 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Hori, K., Yasuda, H., Konno, D., Maruoka, H., Tsumoto, T., and Sobue, K. (2005). NMDA receptor-dependent synaptic translocation of insulin receptor substrate p53 via protein kinase C signaling. J Neurosci 25: 2670–2681.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, T., and De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761: 897–912.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, T., Erdmann, K.S., Roux, A., Habermann, B., Werner, H., and De Camilli, P. (2005). Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9: 791–804.

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen, M., Sun, Y., and Drubin, D.G. (2003). A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115: 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen, M., Toret, C.P., and Drubin, D.G. (2005). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123: 305–320.

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen, M., Toret, C.P., and Drubin, D.G. (2006). Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7: 404–414.

    Article  PubMed  CAS  Google Scholar 

  • Kessels, M.M., and Qualmann, B. (2002). Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J 21: 6083–6094.

    Article  PubMed  CAS  Google Scholar 

  • Kessels, M.M., and Qualmann, B. (2006). Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J Biol Chem 281: 13285–13299.

    Article  PubMed  CAS  Google Scholar 

  • Koestler, S.A., Auinger, S., Vinzenz, M., Rottner, K., and Small, J.V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol 10: 306–313.

    Article  PubMed  CAS  Google Scholar 

  • Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., and Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex. Curr Biol 11: 1645–1655.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E., Marcucci, M., Daniell, L., Pypaert, M., Weisz, O.A., Ochoa, G.C., Farsad, K., Wenk, M.R., and De Camilli, P. (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297: 1193–1196.

    Article  PubMed  CAS  Google Scholar 

  • Lim, K.B., Bu, W., Goh, W.I., Koh, E., Ong, S.H., Pawson, T., Sudhaharan, T., and Ahmed, S. (2008). The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem 283: 20454–20472.

    Article  PubMed  CAS  Google Scholar 

  • Lisanti, M.P., Scherer, P.E., Tang, Z., and Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., and Pilch, P.F. (2008). A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283: 4314–4322.

    Article  PubMed  CAS  Google Scholar 

  • Lundmark, R., Doherty, G.J., Howes, M.T., Cortese, K., Vallis, Y., Parton, R.G., and McMahon, H.T. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 18: 1802–1808.

    Article  PubMed  CAS  Google Scholar 

  • Machesky, L.M., and Johnston, S.A. (2007). MIM: a multifunctional scaffold protein. J Mol Med 85: 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Massari, S., Perego, C., Padovano, V., D'Amico, A., Raimondi, A., Francolini, M., and Pietrini, G. (2009). LIN7 mediates the recruitment of IRSp53 to tight junctions. Traffic 10: 246–257.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y., and Mochizuki, N. (2006). Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25: 2889–2897.

    Article  PubMed  CAS  Google Scholar 

  • Mattila, P.K., and Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9: 446–454.

    Article  PubMed  CAS  Google Scholar 

  • Mattila, P.K., Pykalainen, A., Saarikangas, J., Paavilainen, V.O., Vihinen, H., Jokitalo, E., and Lappalainen, P. (2007). Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176: 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Mattila, P.K., Salminen, M., Yamashiro, T., and Lappalainen, P. (2003). Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278: 8452–8459.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438: 590–596.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, K.A., Zajicek, H., Li, W.P., Peyton, M.J., Minna, J.D., Hernandez, V.J., Luby-Phelps, K., and Anderson, R.G. (2009). SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28: 1001–1015.

    Article  PubMed  CAS  Google Scholar 

  • Merrifield, C.J., Perrais, D., and Zenisek, D. (2005). Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121: 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Merrifield, C.J., Qualmann, B., Kessels, M.M., and Almers, W. (2004). Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83: 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Miki, H., Yamaguchi, H., Suetsugu, S., and Takenawa, T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408: 732–735.

    Article  PubMed  CAS  Google Scholar 

  • Millard, T.H., Bompard, G., Heung, M.Y., Dafforn, T.R., Scott, D.J., Machesky, L.M., and Futterer, K. (2005). Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24: 240–250.

    Article  PubMed  CAS  Google Scholar 

  • Modregger, J., Ritter, B., Witter, B., Paulsson, M., and Plomann, M. (2000). All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113 Pt 24: 4511–4521.

    Google Scholar 

  • Mundy, D.I., Machleidt, T., Ying, Y.S., Anderson, R.G., and Bloom, G.S. (2002). Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115: 4327–4339.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi, S.N., Zahn, R., Mitchell, D.A., Stevenson, B.J., and Munn, A.L. (1998). The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol 8: 959–962.

    Article  PubMed  CAS  Google Scholar 

  • Otsuki, M., Itoh, T., and Takenawa, T.T. (2002). N-WASP is recruited to rafts and associates with endophilin A in response to EGF. J Biol Chem 278: 6461–6469.

    Google Scholar 

  • Palade, G.E., and Bruns, R.R. (1968). Structural modulations of plasmalemmal vesicles. J Cell Biol 37: 633–649.

    Article  PubMed  CAS  Google Scholar 

  • Pani, B., and Singh, B.B. (2009). Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45: 625–633.

    Google Scholar 

  • Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol 8: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans, L., Puntener, D., and Helenius, A. (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296: 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Perrais, D., and Merrifield, C.J. (2005). Dynamics of endocytic vesicle creation. Dev Cell 9: 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303: 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Praefcke, G.J., and McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147.

    Article  PubMed  CAS  Google Scholar 

  • Qualmann, B., and Kelly, R.B. (2000). Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148: 1047–1062.

    Article  PubMed  CAS  Google Scholar 

  • Qualmann, B., Kessels, M.M., and Kelly, R.B. (2000). Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150: F111–F116.

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthi, K.S., Lecuyer, S., Stone, H.A., and Losick, R. (2009). Geometric cue for protein localization in a bacterium. Science 323: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Razzaq, A., Robinson, I.M., McMahon, H.T., Skepper, J.N., Su, Y., Zelhof, A.C., Jackson, A.P., Gay, N.J., and O'Kane, C.J. (2001). Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev 15: 2967–2979.

    Article  PubMed  CAS  Google Scholar 

  • Richter, T., Floetenmeyer, M., Ferguson, C., Galea, J., Goh, J., Lindsay, M.R., Morgan, G.P., Marsh, B.J., and Parton, R.G. (2008). High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9: 893–909.

    Article  PubMed  CAS  Google Scholar 

  • Rocca, D.L., Martin, S., Jenkins, E.L., and Hanley, J.G. (2008). Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10: 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., and Anderson, R.G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Roux, A., Uyhazi, K., Frost, A., and De Camilli, P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441: 528–531.

    Article  PubMed  CAS  Google Scholar 

  • Rozelle, A.L., Machesky, L.M., Yamamoto, M., Driessens, M.H., Insall, R.H., Roth, M.G., Luby-Phelps, K., Marriott, G., Hall, A., and Yin, H.L. (2000). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10: 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Saarikangas, J., Zhao, H., Pykalainen, A., Laurinmaki, P., Mattila, P.K., Kinnunen, P.K., Butcher, S.J., and Lappalainen, P. (2009). Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19: 95–107.

    Article  PubMed  CAS  Google Scholar 

  • Scita, G., Confalonieri, S., Lappalainen, P., and Suetsugu, S. (2008). IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18: 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J., Scita, G., and Casanova, J.E. (2005). WAVE2 Signaling Mediates Invasion of Polarized Epithelial Cells by Salmonella typhimurium. J Biol Chem 280: 29849–29855.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, A., Niwa, H., Tsujita, K., Suetsugu, S., Nitta, K., Hanawa-Suetsugu, K., Akasaka, R., Nishino, Y., Toyama, M., Chen, L., Liu, Z.J., Wang, B.C., Yamamoto, M., Terada, T., Miyazawa, A., Tanaka, A., Sugano, S., Shirouzu, M., Nagayama, K., Takenawa, T., and Yokoyama, S. (2007). Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129: 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Soltau, M., Berhorster, K., Kindler, S., Buck, F., Richter, D., and Kreienkamp, H.J. (2004). Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95. J Neurochem 90: 659–665.

    Article  PubMed  CAS  Google Scholar 

  • Soulard, A., Lechler, T., Spiridonov, V., Shevchenko, A., Li, R., and Winsor, B. (2002). Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol Cell Biol 22: 7889–7906.

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu, S., Kurisu, S., Oikawa, T., Yamazaki, D., Oda, A., and Takenawa, T. (2006a). Optimization of WAVE2-complex-induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac. J Cell Biol 173: 571–585.

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu, S., Murayama, K., Sakamoto, A., Hanawa-Suetsugu, K., Seto, A., Oikawa, T., Mishima, C., Shirouzu, M., Takenawa, T., and Yokoyama, S. (2006b). The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281: 35347–35358.

    Article  PubMed  CAS  Google Scholar 

  • Suh, Y.H., Pelkey, K.A., Lavezzari, G., Roche, P.A., Huganir, R.L., McBain, C.J., and Roche, K.W. (2008). Corequirement of PICK1 binding and PKC phosphorylation for stable surface expression of the metabotropic glutamate receptor mGluR7. Neuron 58: 736–748.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina, T.M., and Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145: 1009–1026.

    Article  PubMed  CAS  Google Scholar 

  • Takano, K., Toyooka, K., and Suetsugu, S. (2008). EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27: 2817–2828.

    Article  PubMed  CAS  Google Scholar 

  • Takenawa, T., and Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8: 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Taunton, J., Rowning, B.A., Coughlin, M.L., Wu, M., Moon, R.T., Mitchison, T.J., and Larabell, C.A. (2000). Actin-dependent Propulsion of Endosomes and Lysosomes by Recruitment of N-WASP. J Cell Biol 148: 519–530.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, S., Takada, H., Hara, T., Mochizuki, N., Funyu, T., Saitoh, H., Terayama, Y., Yamaya, K., Ohyama, C., Nonoyama, S., and Ochs, H.D. (2009). FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J Biol Chem 284: 8548–8556.

    Article  PubMed  CAS  Google Scholar 

  • Tsujita, K., Suetsugu, S., Sasaki, N., Furutani, M., Oikawa, T., and Takenawa, T. (2006). Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172: 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Navarro, M.V., Peng, G., Molinelli, E., Lin Goh, S., Judson, B.L., Rajashankar, K.R., and Sondermann, H. (2009). Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci USA 106: 12700–12705.

    Google Scholar 

  • Yamada, E. (1955). The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol 1: 551–566.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, H., Ohashi, E., Abe, T., Kusumi, N., Li, S.A., Yoshida, Y., Watanabe, M., Tomizawa, K., Kashiwakura, Y., Kumon, H., Matsui, H., and Takei, K. (2007). Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 18: 4669–4680.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi, A., Masuda, M., Ohki, T., Onishi, H., and Mochizuki, N. (2004). A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279: 14929–14936.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C., Hoelzle, M., Disanza, A., Scita, G., and Svitkina, T. (2009). Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4: e5678.

    Article  PubMed  Google Scholar 

  • Yarar, D., Surka, M.C., Leonard, M.C., and Schmid, S.L. (2008). SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9: 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Yarar, D., Waterman-Storer, C.M., and Schmid, S.L. (2007). SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell 13: 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., and Cai, M. (2004). The yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p. J Cell Sci 117: 3839–3853.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Suetsugu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Suetsugu, S., Takenawa, T. (2010). Coupling Membrane Dynamics to Actin Polymerization. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_2

Download citation

Publish with us

Policies and ethics