Skip to main content

Protrusive Forces Generated by Dendritic Actin Networks During Cell Crawling

  • Chapter
  • First Online:
Book cover Actin-based Motility

Abstract

Cell protrusions during crawling motility involve growth of a dendritic actin network at the leading edge. Numerous studies over the last several decades have revealed the identity of key proteins involved in dendritic actin networks and elucidated how these proteins interact with each other during network assembly and growth, enabling reconstitution in vitro. While it is clear that growth of these networks can displace loads, the mechanism and dynamics of force generation continue to be a subject of investigation. In this chapter we describe current theories for the underlying mechanism of force generation by dendritic actin networks and discuss experimental measurements that quantify the magnitude and dynamics of the forces. Reconstitution studies have played a central role in measurements of force generation by dendritic actin networks and demonstrated how the combination of a small set of proteins leads to complex history dependent growth. Measurements of protrusion in crawling cells are now beginning to test the predictions of these reconstitution studies. We conclude by discussing how dendritic actin network growth can be integrated into an overall understanding of cell protrusions during crawling motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie, M., 1980. The Croonian lecture, 1978: The crawling movement of metazoan cells. Proceedings of the Royal Society of London. Series B, Biological Sciences, 207(1167), 129–147.

    Article  Google Scholar 

  • Alberts, J.B. & Odell, G.M., 2004. In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biology, 2(12), e412.

    Article  PubMed  Google Scholar 

  • Binnig, G., Quate, C. & Gerber, Ch., 1986. Atomic force microscope. Physical Review Letters, 56(9), 930–933.

    Article  PubMed  Google Scholar 

  • Bohnet, S. et al., 2006. Weak force stalls protrusion at the leading edge of the lamellipodium. Biophysical Journal, 90(5), 1810–1820.

    Article  PubMed  CAS  Google Scholar 

  • Boukellal, H. et al., 2004. Soft Listeria: actin-based propulsion of liquid drops. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69(6 Pt 1), 061906.

    Article  PubMed  Google Scholar 

  • Brunner, C.A. et al., 2006. Cell migration through small gaps. European Biophysics Journal: EBJ, 35(8), 713–719.

    Article  PubMed  Google Scholar 

  • Cameron, L.A. et al., 1999. Motility of ActA protein-coated microspheres driven by actin polymerization. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 4908–4913.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A.E., 2001. Growth of branched actin networks against obstacles. Biophysical Journal, 81(4), 1907–1923.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A.E., 2003. Growth velocities of branched actin networks. Biophysical Journal, 84(5), 2907–2918.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, O., Parekh, S.H. & Fletcher, D.A., 2007. Reversible stress softening of actin networks. Nature, 445(7125), 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, O. et al., 2009. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nature Methods, 6(5), 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Choy, J.L. et al., 2007. Differential force microscope for long time-scale biophysical measurements. The Review of Scientific Instruments, 78(4), 043711.

    Article  PubMed  Google Scholar 

  • Dickinson, R.B., Caro, L. & Purich, D.L., 2004. Force generation by cytoskeletal filament end-tracking proteins. Biophysical Journal, 87(4), 2838–2854.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, R.B. & Purich, D.L., 2002. Clamped-filament elongation model for actin-based motors. Biophysical Journal, 82(2), 605–617.

    Article  PubMed  CAS  Google Scholar 

  • Dogterom, M. & Yurke, B., 1997. Measurement of the force-velocity relation for growing microtubules. Science (New York, N.Y.), 278(5339), 856–860.

    Article  CAS  Google Scholar 

  • Finer, J.T., Simmons, R.M. & Spudich, J.A., 1994. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 368(6467), 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Footer, M.J. et al., 2007. Direct measurement of force generation by actin filament polymerization using an optical trap. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2181–2186.

    Article  PubMed  CAS  Google Scholar 

  • Frederick, K.B., Sept, D. & De La Cruz, E.M., 2008. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability. Journal of Molecular Biology, 378(3), 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Gardel, M.L. et al., 2008. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. The Journal of Cell Biology, 183(6), 999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Gerbal, F., Chaikin, P. et al., 2000a. An elastic analysis of Listeria monocytogenes propulsion. Biophysical Journal, 79(5), 2259–2275.

    Article  PubMed  CAS  Google Scholar 

  • Gerbal, F., Laurent, V. et al., 2000b. Measurement of the elasticity of the actin tail of Listeria monocytogenes. European Biophysics Journal: EBJ, 29(2), 134–140.

    Article  PubMed  CAS  Google Scholar 

  • Hill, AV, 1938. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London Series B-Biological Sciences, 126, 136–195.

    Article  Google Scholar 

  • Hill, T.L. & Kirschner, M.W., 1982a. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. International Review of Cytology, 78, 1–125.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T.L. & Kirschner, M.W., 1982b. Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work. Proceedings of the National Academy of Sciences of the United States of America, 79(2), 490–494.

    Article  PubMed  CAS  Google Scholar 

  • Ji, L., Lim, J. & Danuser, G., 2008. Fluctuations of intracellular forces during cell protrusion. Nature Cell Biology, 10(12), 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  • Keren, K. et al., 2008. Mechanism of shape determination in motile cells. Nature, 453(7194), 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Kovar, D.R. & Pollard, T.D., 2004. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14725–14730.

    Article  PubMed  CAS  Google Scholar 

  • Lämmermann, T. et al., 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature, 453(7191), 51–55.

    Article  PubMed  Google Scholar 

  • Lee, K. & Liu, A.J., 2009. Force-velocity relation for actin-polymerization-driven motility from brownian dynamics simulations. Biophysical Journal, 97(5), 1295–1304.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.H. & Forscher, P., 1995. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron, 14(4), 763–771.

    Article  PubMed  CAS  Google Scholar 

  • Lo, C.M. et al., 2000. Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1), 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Loisel, T.P. et al., 1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature, 401(6753), 613–610.

    Article  PubMed  CAS  Google Scholar 

  • Marcy, Y. et al., 2004. Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 5992–5997.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J.L. et al., 2003. The force-velocity relationship for the actin-based motility of Listeria monocytogenes. Current Biology: CB, 13(4), 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner, A. & Oster, G., 1996. Cell motility driven by actin polymerization. Biophysical Journal, 71(6), 3030–3045.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner, A. & Oster, G., 2003. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophysical Journal, 84(3), 1591–1605.

    Article  PubMed  CAS  Google Scholar 

  • Mullins, R.D., Heuser, J.A. & Pollard, T.D., 1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6181–6186.

    Article  PubMed  CAS  Google Scholar 

  • Parekh, S.H. et al., 2005. Loading history determines the velocity of actin-network growth. Nature Cell Biology, 7(12), 1219–1223.

    Article  PubMed  Google Scholar 

  • Peskin, C.S., Odell, G.M. & Oster, G.F., 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophysical Journal, 65(1), 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., Blanchoin, L. & Mullins, R.D., 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual Review of Biophysics and Biomolecular Structure, 29, 545–576.

    Article  PubMed  CAS  Google Scholar 

  • Ponti, A. et al., 2004. Two distinct actin networks drive the protrusion of migrating cells. Science (New York, N.Y.), 305(5691), 1782–1786.

    Article  CAS  Google Scholar 

  • Prass, M. et al., 2006. Direct measurement of the lamellipodial protrusive force in a migrating cell. The Journal of Cell Biology, 174(6), 767–772.

    Article  PubMed  CAS  Google Scholar 

  • Shaevitz, J.W. & Fletcher, D.A., 2007. Load fluctuations drive actin network growth. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15688–15692.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.E. et al., 2001. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature, 413(6857), 748–752.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina, T.M. & Borisy, G.G., 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of Cell Biology, 145(5), 1009–1026.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda, K. & Block, S.M., 1994. Force and velocity measured for single kinesin molecules. Cell, 77(5), 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Theriot, J.A. & Mitchison, T.J., 1991. Actin microfilament dynamics in locomoting cells. Nature, 352(6331), 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Theriot, J.A. et al., 1992. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature, 357(6375), 257–260.

    Article  PubMed  CAS  Google Scholar 

  • van der Gucht, J. et al., 2005. Stress release drives symmetry breaking for actin-based movement. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 7847–7852.

    Article  PubMed  Google Scholar 

  • Vazquez-Boland, J.A. et al., 1992. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infection and Immunity, 60(1), 219–230.

    PubMed  CAS  Google Scholar 

  • Wang, M.D. et al., 1998. Force and velocity measured for single molecules of RNA polymerase. Science (New York, N.Y.), 282(5390), 902–907.

    Article  CAS  Google Scholar 

  • Watanabe, N. & Mitchison, T.J., 2002. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science (New York, N.Y.), 295(5557), 1083–1086.

    Article  CAS  Google Scholar 

  • Welch, M.D., Iwamatsu, A. & Mitchison, T.J., 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature, 385(6613), 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Wiesner, S. et al., 2003. A biomimetic motility assay provides insight into the mechanism of actin-based motility. The Journal of Cell Biology, 160(3), 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Zalevsky, J., Grigorova, I. & Mullins, R.D., 2001. Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex. The Journal of Biological Chemistry, 276(5), 3468–3475.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose work we were not able to describe and cite due to space limitations. We thank the Fletcher lab for general discussions on the topic. OC acknowledges the support of an NSF graduate fellowship, and DAF acknowledges the support of NIH RO1 grants and the Cell Propulsion Lab, an NIH Nanomedicine Development Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Chaudhuri, O., Fletcher, D.A. (2010). Protrusive Forces Generated by Dendritic Actin Networks During Cell Crawling. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_15

Download citation

Publish with us

Policies and ethics