Skip to main content

Structure–Property Relationships in Novel High Pressure Superhard Materials

  • Conference paper
  • First Online:

Abstract

Research on novel high-pressure superhard materials (those approaching diamond and cubic boron nitride in hardness) is driven by both scientific and practical objectives: the desire to understand their structure and bonding, which determine the unique properties of these materials, on one hand, and the demand of modern technologies for robust materials with superior properties, on the other. Structure–property relationships in newly synthesised superhard materials, as well as some methodological aspects of their characterisation are in focus of the present paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert B., Hillebrecht H., Angew. Chem. Int. Ed. 48, 2–31 (2009).

    Google Scholar 

  • Ashcroft N.W., Mermin N.D., Solid State Physics. Harcourt College Publishers, New York (1976).

    Google Scholar 

  • Berman R. (ed.), Physical Properties of Diamonds, Clarendon Press, Oxford, 1965.

    Google Scholar 

  • Blase X., Bustarret E., Chapelier C., Klein T., Marcenat C., Nat. Mater. 8, 375–382 (2009).

    ADS  Google Scholar 

  • Brazhkin V., Dubrovinskaia N., Nicol M., Novikov N., Riedel R., Solozhenko V., Zhao Y.Nat. Mater. 3, 576–577 (2004).

    ADS  Google Scholar 

  • Brazhkin V.V., Taniguichi T., Akaishi M., Popova S.V., J. Mater. Res. 19, 1643 (2004).

    ADS  Google Scholar 

  • Buschveck K.C., Boron Compounds, Elemental Boron and Boron Carbides 13, Gmelin Handbook of Inorganic Chemistry, Springer Verlag, Berlin (1981).

    Google Scholar 

  • Bustarret E. et al., Phys. Rev. Lett. 93, 237005 (2004).

    ADS  Google Scholar 

  • Chen Z.Y., Xiang H.J., Yang J., Hou J.G., Zhu Q., Phys. Rev. B 74, 012102 (2006).

    ADS  Google Scholar 

  • Chiang Y., Birnie D.P., Kingery W.D., Physical Ceramics, Wiley, New York/London (1997).

    Google Scholar 

  • Chung H.Y., Weinberger M.B., Levine J.B., Kavner A., Yang J.M., Tolbert S.H., Kaner R.B., Science, 316, 436 (2007a).

    ADS  Google Scholar 

  • Chung H.Y., Weinberger M.B., Levine J.B., Cumberland R.W., Kavner A., Yang J.M., Tolbert S.H., Kaner R.B., Science 318, 1550d (2007b).

    ADS  Google Scholar 

  • Cohen M.L., J. Hard Mater. 2, 13–27 (1991).

    ADS  Google Scholar 

  • Cumberland R.W., Weinberger M.B., Gilman J.J., Clark S.M., Tolbert S.H., Kaner R.B., J., Am. Chem. Soc. 127, 7264 (2005).

    Google Scholar 

  • Dub S.N., Petrusha I.A., High Press. Res. 26, 71 (2006).

    Google Scholar 

  • Dubrovinskaia N., Dubrovinsky L., Langenhorst F., Jacobsen S., Liebske C., Diam. Relat. Mater. 14, 16–22 (2004).

    ADS  Google Scholar 

  • Dubrovinskaia N., Dubrovinsky L., Crichton W., Langenhorst F., Richter A., Appl. Phys. Lett. 87, 083106 (2005).

    ADS  Google Scholar 

  • Dubrovinskaia N., Dub S., Dubrovinsky L., Nano Lett. 6, 824–826 (2006a).

    ADS  Google Scholar 

  • Dubrovinskaia N., Eska G., Sheshin G. A., Braun H., J. Appl Phys., 033903-1-7 (2006b).

    Google Scholar 

  • Dubrovinskaia N., Dubrovinsky L., Solozhenko V.L., Science 318, 1550c (2007a).

    ADS  Google Scholar 

  • Dubrovinskaia N., Solozhenko V. L., Miyajima N., Dmitriev V., Kurakevych O. O., Dubrovinsky L., Appl. Phys. Lett. 90, 101912 (2007b).

    ADS  Google Scholar 

  • Dubrovinskaia N., Wirth R., Wosnitza J., Papageorgiou T., Braun H.F., Miyajima N., Dubrovinsky L., Proc. Natl. Acad. Sci. USA 105, 33, 11619–11622 (2008).

    Google Scholar 

  • Ekimov E.A., Sidorov V.A., Bauer E.D., Mel’nik N.N., Curro N.J., Thompson J.D., Stishov S.M. Nature 428, 542 (2004).

    ADS  Google Scholar 

  • Eremets M.I., Struzhkin V.V., Ho-kwang Mao, Hemley R.J., Science 293, 272 (2001).

    ADS  Google Scholar 

  • Fischer-Cripps A.C., Nanoindentation, Springer-Verlag, New York (2002).

    Google Scholar 

  • Gillespie J.S., J. Am. Chem. Soc. 88, 2423 (1966).

    Google Scholar 

  • Gou H., Hou L., Zhang J., Li H., Sun G., Gao F., Appl. Phys. Lett. 88(22), 1904 (2006).

    Google Scholar 

  • Häussermann U., Simak S.I., Ahuja R., Johansson B., Phys. Rev. Lett. 90, 65701 (2003).

    Google Scholar 

  • He D., Zhao Y., Daemen L., Qian J., Shen T.D., Zerda T.W., Appl. Phys. Lett. 81, 643 (2002).

    ADS  Google Scholar 

  • Hoard J.L., Sullenger D.B., Kennard C.H.L., Highes R.E., J. Solid State Chem. 1, 268, (1970).

    ADS  Google Scholar 

  • Irifune T., Kurio A., Sakamoto S., Inoue T., Sumiya H., Nature (London) 421, 599 (2003).

    ADS  Google Scholar 

  • Jiang C., Lin Z., Zhang J., Zhao Y., Appl. Phys. Lett. 94, 191906 (2009).

    ADS  Google Scholar 

  • Katada K., Jpn. J. Appl. Phys. 5, 582 (1966).

    ADS  Google Scholar 

  • Ma Y., Prewitt Ch.T., Zou G., Ho-kwang Mao, Hemley R.J., Phys. Rev. B 67, 174116 (2003).

    ADS  Google Scholar 

  • Mao W.L., Mao H.-K., Eng P. J., Trainor T.P., Newville M., Kao C.-C., Heinz D.L., J. Shu, Y. Meng, Hemley R. J., Science 302, 425–427 (2003).

    ADS  Google Scholar 

  • McMillan P.F., Nat. Mater. 1, 19 (2002).

    ADS  Google Scholar 

  • Morell R., Handbook of Properties of Technical and Engineering Ceramics. HMSO books, London (1987).

    Google Scholar 

  • Nakamoto Y., Sumiya H., Matsuoka T., Shimizu K., Irifune T., Ohishi Y., Jpn. J. Appl. Phys., 46, 25, L640–L641 (2007).

    Google Scholar 

  • Naslain R., Boron and Refractory Borides (Ed.: V. I. Matkovich), Springer Verlag, Berlin (1977).

    Google Scholar 

  • Oganov A.R., Chen J., Gatti C., Ma Y., Ma Y, Glass C.W., Liu Z., Yu T., Kurakevych O.O., Solozhenko V.L., Nature 457, 863 (2009).

    ADS  Google Scholar 

  • Oliver W.C., Pharr G., J. Mater. Res. 7, 1562 (1992).

    ADS  Google Scholar 

  • Qin J., He D., Wang J., Fang L., Lei L., Li Y., Hu J., Kou Z., Bi Y., Adv. Mater. 20, 4780–4783 (2008).

    Google Scholar 

  • Richter A., Smith R., Dubrovinskaia N., McGee E., High Press. Res. 26, 2, 99–109 (2006).

    Google Scholar 

  • Sanz D.N., Loubeyre P., Mezouar M., Phys. Rev. Lett. 89, 245501 (2002).

    ADS  Google Scholar 

  • Sidorov V.A., Ekimov E.A., Stishov S.M., Bauer E.D., Thompson J.D., Phys Rev B. 71, 060502 (2005).

    ADS  Google Scholar 

  • Solozhenko V.L., Turkevich V.Z., J. Therm. Anal. 38, 1181 (1992).

    Google Scholar 

  • Solozhenko V.L., Andrault D., Fiquet G., Mezouar M., Rubie D.C., Appl. Phys. Lett. 78, 1385 (2001).

    ADS  Google Scholar 

  • Sumiya H., Irifune T., J. Mater. Res., 22, 8 (2007).

    Google Scholar 

  • Sumiya H., Irifune T., Kurio A., Sakamoto S., Inoue T., J. Mat. Sci., 39, 445–450 (2004).

    ADS  Google Scholar 

  • Takano Y. et al., Appl. Phys. Lett. 85, 14, 2851 (2004).

    ADS  Google Scholar 

  • Taniguchi T., Akaishi.M, Yamaoka S., J. Am. Ceram. Soc. 79, 547 (1996).

    Google Scholar 

  • Tronke K., Semicond. Sci. Technol. 18, S20 (2003).

    ADS  Google Scholar 

  • Umezawa H. et al., Z. Anorg. Allg. Chem. 627, 2100–2104 (2001).

    Google Scholar 

  • Veprˇek S., Zeer A., Riedel R., Handbook of Ceramic Hard Materials (Ed.: R. Riedel), Wiley, Weinheim (2000).

    Google Scholar 

  • Will G., Ploog K., Nature 251, 406 (1974).

    ADS  Google Scholar 

  • Wentorf R.H., Chem Phys. 26, 956 (1957).

    ADS  Google Scholar 

  • Wentorf R.H., Science 147, 49–50 (1965).

    ADS  Google Scholar 

  • Zarechnaya E.Yu., Dubrovinsky L., Dubrovinskaia N., Miyajima N., Filinchuk Y., Chernyshov D., Dmitriev V., Sci. Technol. Adv. Mater. 9, 044209 (2008).

    Google Scholar 

  • Zarechnaya E.Yu., Dubrovinsky L., Dubrovinskaia N., Filinchuk Y., Chernyshov D., Dmitriev V., Miyajima N., El Goresy A., Braun H.F., Van Smaalen S., Kantor I., Kantor A., Prakapenka V., Hanfland M., Mikhaylushkin A.S., Abrikosov I.A., Simak S.I., Phys. Rev. Lett. 102, 185501 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Dubrovinskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dubrovinskaia, N., Dubrovinsky, L. (2010). Structure–Property Relationships in Novel High Pressure Superhard Materials. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_34

Download citation

Publish with us

Policies and ethics