Skip to main content

Quantum Mechanics Without a Hamiltonian Operator

  • Chapter
  • First Online:
Book cover The Genesis of Feynman Diagrams

Part of the book series: Archimedes ((ARIM,volume 26))

Abstract

In the early 1940s, when Feynman was a graduate student, one of the most pressing problems facing theoretical physicists of the time was the fact that infinite and, therefore, uninterpretable quantities arose from some of the principles of electrodynamics—in both classical electrodynamics as well as in the early attempts to establish a quantum theory.1 Roughly, the problem was as follows: an extended electron could not be stable because the charges distributed over its volume would repel each other. On the other hand, a point-like electron would imply that the energy contained in the electron’s electrostatic field would be infinite, since the field energy e/r diverges in the limit of vanishing radius r of the spatial distribution of the charge e.2

But what does the quantum mechanician do if he cannot be provided with a Hamilton operator? He goes on strike.

Heinrich Leutwyler

Lecture notes ‘Elektrodynamik und Optik’ (p. 21)

Translation A. W.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a comprehensive account of the history of QED, see Schweber (1994).

  2. 2.

    See, e. g., Shapere (1984); Frisch (2005).

  3. 3.

    See, e. g., Dirac (1938); Frenkel (1925).

  4. 4.

    Feynman (2005), Introduction.

  5. 5.

    Only a summary of a presentation of Wheeler and Feynman’s theory had been published by the time Feynman started working on his thesis (see “Minutes of the Cambridge, Massachusetts, Meeting, February 21 and 22, 1941”, p. 683). The published accounts of the theory are Wheeler and Feynman (1945, 1949).

  6. 6.

    Feynman (2005), Introduction.

  7. 7.

    Dirac (1935, pp. 124–126).

  8. 8.

    Quoted in Feynman (2005, p. 26).

  9. 9.

    Weiner (1966b, p. 148–149), reprinted with permission. Copyright 1966, American Institute of Physics.

  10. 10.

    Dirac (1935), equation 68, p. 113; Dirac (1933), equation 7.

  11. 11.

    Feynman (2005, p. 28).

  12. 12.

    Feynman (2005, p. 28).

  13. 13.

    Feynman (2005, p. 31).

  14. 14.

    Dirac (1935), equation 24, p. 125.

  15. 15.

    Feynman (2005, p. 31).

  16. 16.

    Feynman (2005), equation 47.

  17. 17.

    Feynman (2005, p. 69).

  18. 18.

    Cf. equation 62 in Feynman (2005, p. 39).

  19. 19.

    Feynman (2005), equation 61.

  20. 20.

    Cf. equation 50 in Feynman (2005, p. 32).

  21. 21.

    RMP48, p. 367.

  22. 22.

    Feynman (2005, p. 41); Feynman writes \(\mathcal{A}\) instead of S for the action.

  23. 23.

    RMP48, p. 374.

  24. 24.

    RMP48, p. 375.

  25. 25.

    RMP48, p. 376.

  26. 26.

    Schwinger (1948b).

  27. 27.

    For a more extended account of Schwinger’s and Feynman’s biographies and their contributions to QED, see Schweber (1994, chapters 7 and 8).

  28. 28.

    Pauli (1933, p. 237).

References

  • Helium. (Early 1950s). Series of selected folios from Box 11, Folder 6.

    Google Scholar 

  • Dirac, P. A. M. (1933). ‘The Lagrangian in Quantum Mechanics’. In: Physikalische Zeitschrift der Sowjetunion 3.1, pp. 64–72.

    Google Scholar 

  • Dirac, P. A. M. (1935). The Principles of Quantum Mechanics by P. A. M. Dirac. 2nd ed. Oxford: Clarendon Press.

    Google Scholar 

  • Dirac, P. A. M. (1938). ‘Classical Theory of Radiating Electrons’. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 167.929 (Aug. 1938), pp. 148–169.

    Google Scholar 

  • Fermi, E. (1932). ‘Quantum Theory of Radiation’. In: Reviews of Modern Physics 4.1 (Jan. 1932), pp. 87–132.

    Article  Google Scholar 

  • Feynman, R. P. (1949). ‘The Theory of Positrons’. In: Physical Review 76.6 (Sept. 1949), pp. 749–759.

    Article  MathSciNet  Google Scholar 

  • Feynman, R. P. (2005). ‘The Principle of Least Action in Quantum Mechanics’. In: Feynman’s Thesis: A New Approach to Quantum Theory. Ed. by L. M. Brown. Singapore: World Scientific Publishing, pp. 1–69.

    Google Scholar 

  • Frenkel, J. (1925). ‘Zur Elektrodynamik punktförmiger Elektronen’. In: Zeitschrift für Physik A Hadrons and Nuclei 32.1 (Dec. 1925), pp. 518–534.

    ADS  Google Scholar 

  • Frisch, M. (2005). Inconsistency, Asymmetry, and Non-Locality: A Philosophical Investigation of Classical Electrodynamics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gleick, J. (1992). Genius: The Life and Science of Richard Feynman. Originally published: New York: Pantheon Books/Vintage Books.

    Google Scholar 

  • Pauli, W. (1933). ‘Die allgemeinen Prinzipien der Wellenmechanik’. In: Handbuch der Physik. Vol. 24: Quantentheorie. Ed. by H. Geiger and K. Scheel. Berlin: Springer, pp. 83–272.

    Google Scholar 

  • Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Schwinger, J. (1948b). ‘Quantum Electrodynamics. I. A Covariant Formulation’. In: Physical Review 74.10 (Nov. 1948), pp. 1439–1461.

    Article  MathSciNet  Google Scholar 

  • Shapere, D. (1984). ‘Notes Toward a Post-Positivistic Interpretation of Science, Part II’. In: Reason and the Search for Knowledge. Ed. by D. Shapere. Dordrecht: Reidel, pp. 352–382.

    Google Scholar 

  • Weiner, C. (1966b). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 1’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.

    Google Scholar 

  • Wheeler, J. A. and R. P. Feynman (1945). ‘Interaction with the Absorber as the Mechanism of Radiation’. In: Reviews of Modern Physics 17.2–3 (Apr. 1945), pp. 157–181.

    Article  Google Scholar 

  • ‘Minutes of the Cambridge, Massachusetts, Meeting, February 21 and 22, 1941’ (1941). In: Physical Review 59.8 (Apr. 1941), pp. 682–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Wüthrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wüthrich, A. (2010). Quantum Mechanics Without a Hamiltonian Operator. In: The Genesis of Feynman Diagrams. Archimedes, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9228-1_3

Download citation

Publish with us

Policies and ethics