Skip to main content

Macrophyte Ecology and Its Long-term Dynamics

  • Chapter
  • First Online:
Book cover Ecology of Threatened Semi-Arid Wetlands

Abstract

Dynamics of hydrophytic and helophytic vegetation is analyzed in relation to environmental changes from 1956 until the present day. These changes are mainly related to hydrological characteristics and water quality. In the case of submerged vegetation, community changes are related to alterations of the salinity and eutrophication regime, manifested in a decreased coverage and the extinction of some species. In the case of the helophytic vegetation, changes are associated with the fragmentation of the original vegetation patches, originally dominated by Cladium mariscus. Nowadays emergent vegetation is dominated by Typha domingensis, Phragmites australis, and, in the last years, by annual vegetation, nitrophilous taxa and woody species (Tamarix canariensis, T. gallica). This vegetation type indicates wet and saline conditions in soils. Despite these changes at the structural level, there is also evidence of a considerable increase in the biomass that accumulates every year in the wetland and which accelerates wetland siltation in the long term.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez MG, Tron F, Mauchamp A (2005) Sexual versus asexual colonization by Phragmites australis: 25-year reed dynamics in a Mediterranean marsh, southern France. Wetlands 25:639–647

    Article  Google Scholar 

  • Álvarez-Cobelas M, Cirujano S (eds) (1996) Las Tablas de Daimiel: ecología acuática y sociedad. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Álvarez-Cobelas M, Cirujano S (2007) Multilevel responses of emergent vegetation to environmental factors in a semiarid floodplain. Aquat Bot 87:49–60

    Article  Google Scholar 

  • Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–97

    Article  Google Scholar 

  • Álvarez-Cobelas M, Sánchez-Carrillo S, Cirujano S, Angeler DG (2008) Long-term changes in spatial patterns of emergent vegetation in a Mediterranean floodplain: natural versus anthropogenic constraints. Plant Ecol 194:257–271

    Article  Google Scholar 

  • Andersen OFO (1978) Effects of nutrient level on the decomposition of Phragmites communis Trin. Archiv Hydrobiol 84:42–54

    Google Scholar 

  • Anderson MG, Idso SB (1987) Surface geometry and stomatal conductance effects on evaporation from aquatic macrophytes. Water Resour Res 23:1037–1042

    Article  Google Scholar 

  • Armentano TV, Sah JP, Ross MS, Jones DT, Cooley HC, Smith CS (2006) Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USA. Hydrobiologia 569:293–309

    Article  Google Scholar 

  • Blindow I (1988) Phosphorus toxicity in Chara. Aquat Bot 32:393–395

    Article  CAS  Google Scholar 

  • Blindow I (1992) Decline of charophytes during eutrophication: comparison with angiosperms. Freshw Biol 28:9–14

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E, Fortin MJ (2000) Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For Ecol Manage 134:1–16

    Article  Google Scholar 

  • Camargo JA, Cirujano S (1996) Reduction in diversity of aquatic plants in a Spanish wetland: the effect of the size of inundated area. J Freshw Ecol 12:539–543

    Article  Google Scholar 

  • Casgrain P, Legendre P (2001) The R-Package for multivariate and spatial analysis, version 4.0 d3 – User’s manual. Departament de sciences biologiques, Université de Montreal, Montreal

    Google Scholar 

  • Cirujano S, Casado C, Bernués M, Camargo JA (1996) Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, Central Spain): differences in water physico-chemistry and vegetation between 1974 and 1989. Biol Conserv 75:211–215

    Article  Google Scholar 

  • Cirujano S, Medina L, Chirino M (2002) Plantas acuáticas de las lagunas y humedales de Castilla-La Mancha. Junta de Comunidades de Castilla-La Mancha – Real Jardín Botánico, Madrid

    Google Scholar 

  • Cirujano S, Álvarez-Cobelas M, Riolobos P, Ribeiro MD, Sánchez-Carrillo S, Medina L, Moreno M, Angeler DG, Rojo C, Rodrigo MA, Armengol J, Ortega-Mayagoitia E (2003) Seguimiento y recuperación ambiental del P.N. Las Tablas de Daimiel. Informe 1999-2002 para el Organismo Público Parques Nacionales, Madrid

    Google Scholar 

  • Cirujano S, Camargo JA, Gómez-Cordobés C (2004) Feeding preferences of the red swamp crayfish Procambarus clarkii (Girard) on living macrophytes in a Spanish wetland. J Freshw Ecol 19:219–226

    Article  Google Scholar 

  • Clevering OA (1998) An investigation into the effects of nitrogen on growth and morphology of stable and die-back populations of Phragmites australis. Aquat Bot 60:11–25

    Article  Google Scholar 

  • Clifford P, Richardson S, Hémon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45:123–145

    Article  PubMed  CAS  Google Scholar 

  • Conover WJ (1999) Practical non-parametric statistics. Wiley, New York

    Google Scholar 

  • Conway VM (1936) Studies in the autoecology of Cladium mariscus R.Br. I. Structure and development. New Phytol 35:177–205

    Article  Google Scholar 

  • Conway VM (1938) Studies in the autoecology of Cladium mariscus R.Br. III. Growth rates of the leaves. New Phytol 37:254–278

    Article  Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants. Biology and ecology. Lewis, Boca Ratón, FL

    Book  Google Scholar 

  • Duarte CM, Planas D, Peñuelas J (1994) Macrophytes, taking control of an ancestral home. In: Margalef R (ed) Limnology now. Elsevier, Amsterdam

    Google Scholar 

  • Dykyjová D, Kvet J (eds) (1978) Pond littoral ecosystems. Structure and function. Springer-Verlag, Berlin

    Google Scholar 

  • Egertson CJ, Kopaska JA, Downing JA (2004) A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524:145–156

    Article  Google Scholar 

  • ESRI (2006) ArcGIS Version 9.2 and the Spatial Analyst Extension, Environmental Systems Research Institute, Redlands, California

    Google Scholar 

  • Fiala K (1978) Underground organs of Typha angustifolia and Typha latifolia: their growth, propagation and production. Acta Sci Nat Acad Sci Bohemosl Brno 12:1–43

    Google Scholar 

  • Grace JB (1988) The effects of nutrient additions on mixtures of Typha latifolia L. and Typha domingensis Pers. along a water-depth gradient. Aquat Bot 31:83–92

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384

    Article  Google Scholar 

  • Hutchings MJ (1997) The structure of plant populations. Plant litter quality and decomposition: a historical overview. In: Crawley MJ (ed) Plant Ecol. Blackwell, Oxford

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Lewis, Boca Ratón, FL

    Google Scholar 

  • Keddy PA (2000) Wetland ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kohl JG, Woitke P, Kühl H, Dewender M, König G (1998) Seasonal changes in dissolved amino acids and sugars in basal culm internodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status. Aquat Bot 60:221–240

    Article  CAS  Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes-a review. Aquat Bot 72:249–260

    Article  Google Scholar 

  • Leendertsee PC, Roozen AJM, Rozema J (1997) Long-term changes (1953-1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding. Plant Ecol 132:49–58

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lorenzen B, Brix H, Mendelssohn IA, McKee KL, Miao SL (2001) Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat Bot 70:117–133

    Article  CAS  Google Scholar 

  • Maheu-Giroux M, de Blois S (2005) Mapping the invasive species Phragmites australis in linear wetland corridors. Aquat Bot 83:310–320

    Article  Google Scholar 

  • Mason CF, Bryant RJ (1974) Production, nutrient content and decomposition of Phragmites communis Trin. and Typha angustifolia L. J Ecol 63:71–95

    Google Scholar 

  • Miao SL, Sklar FH (1998) Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecol Manage 5:245–263

    Article  Google Scholar 

  • Miao SL, Newman S, Sklar FH (2000) Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquat Bot 68:297–311

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2001) Wetlands, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    PubMed  CAS  Google Scholar 

  • Morillo C, González JL (1996) Management of Mediterranean Wetlands 2. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Newman S, Kumpf H, Laing JA, Kennedy WC (2001) Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54:229–250

    Article  CAS  Google Scholar 

  • Oden NL (1984) Assessing the significance of a spatial correlogram. Geogr Anal 16:1–16

    Article  Google Scholar 

  • Ogden JC (2005) Everglades ridge and slough conceptual ecological model. Wetlands 25:810–820

    Article  Google Scholar 

  • Pascual H (1976) Contribución al estudio ecológico de Las Tablas de Daimiel. I. La vegetación. Anales INIA 2:107–128

    Google Scholar 

  • Polunin NVC (1982) Processes contributing to the decay of reed (Phragmites australis) litter in fresh water. Archiv Hydrobiol 94:182–209

    Google Scholar 

  • Pu M, Jones RH, Guo D, Lister A (2005) Regeneration strategies, disturbance and plant interactions as organizers of vegetation spatial patterns in a pine forest. Landscape Ecol 20:971–987

    Article  Google Scholar 

  • Ribeiro MD (2005) Biología de los macrófitos emergentes en Las Tablas de Daimiel. Ph.D. thesis. Universidad Complutense, Madrid

    Google Scholar 

  • Ribeiro MD, Alvarez-Cobelas M, Riolobos P, Cirujano S (2004) Descomposición de los helófitos en un humedal semiárido hipertrófico. Anal Jar Bot Madrid 61:53–61

    Google Scholar 

  • Rodewald-Rudescu L (1974) Das Schilfrohr. Die Binnengewässer, 27. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Rosenberg MS (2002) PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Department of Biology, Arizona State University, Tempe, Version 1.0

    Google Scholar 

  • Sáez-Royuela R (1977) Contributión al studio ecológico de las Tablas de Daimiell III, Las aguas (1974–1975). Anal INIA, Serie Recursos Naturales 3:101–149

    Google Scholar 

  • Saltmarsh A, Mauchamp A, Rambal S (2006) Contrasted effects of water limitation on leaf functions and growth of two emergent co-occurring plant species, Cladium mariscus and Phragmites australis. Aquat Bot 84:191–198

    Article  Google Scholar 

  • Sánchez-Carrillo S (2000) Hidrología y sedimentación actual de Las Tablas de Daimiel. Ph.D. Thesis. Universidad Autónoma, Madrid

    Google Scholar 

  • Sánchez-Carrillo S, Álvarez-Cobelas M (2001) Nutrient dynamics and eutrophication patterns in a semiarid wetland: the effects of fluctuating hydrology. Water Air Soil Pollut 131:97–118

    Article  Google Scholar 

  • Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R, Alvarez-Cobelas M, Garatuza-Payán J (2004) Evapotranspiration in semi-arid wetlands: relationships between inundation and the macrophyte cover:open water ratio. Adv Water Resour 27:643–655

    Article  Google Scholar 

  • Seabloom EW, Moloney KA, van der Valk AG (2001) Constraints on the establishment of plants along a fluctuating water-depth gradient. Ecology 82:2216–2232

    Article  Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Ann Rev Ecol Evol Syst 36:319–344

    Article  Google Scholar 

  • Urban NH, Davis SM, Aumen NG (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrological and fire regimes. Aquat Bot 46:203–223

    Article  CAS  Google Scholar 

  • Visser JM, Sasser CE, Chabreck RH, Linscombe RG (1999) Long-term vegetation change in Louisiana tidal marshes, 1968–1992. Wetlands 19:168–175

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific Fundamentals on the Eutrophication of Lakes and Flowing Waters, with particular reference to Nitrogen and Phosphorus as Factors in Eutrophication. OECD Report, Paris

    Google Scholar 

  • Vymazal J (1995) Algae and element cycling in wetlands. CRC Press, Boca Ratón, FL

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Juan Carlos Rodríguez-Murillo for his data on primary production and biomass of helophytes and terrestrial plants in 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cirujano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Cirujano, S., Álvarez-Cobelas, M., Sánchez-Andrés, R. (2010). Macrophyte Ecology and Its Long-term Dynamics. In: Sánchez-Carrillo, S., Angeler, D. (eds) Ecology of Threatened Semi-Arid Wetlands. Wetlands: Ecology, Conservation and Management, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9181-9_7

Download citation

Publish with us

Policies and ethics