Skip to main content

Lipopolysaccharides and Plant Innate Immunity

  • Chapter
  • First Online:
Endotoxins: Structure, Function and Recognition

Part of the book series: Subcellular Biochemistry ((SCBI,volume 53))

Abstract

Plants posses an innate immune system that has many parallels with those found in mammals and insects. A range of molecules of microbial origin called Microbe Associated Molecular Patterns (MAMPs) act to trigger basal defense responses in plants. These elicitors include lipopolysaccharides (LPS) from diverse Gram-negative bacteria. Both core oligosaccharide and the lipid A moieties of LPS as well as synthetic O-antigen oligosaccharides have activity in inducing defense responses in the model plant Arabidopsis thaliana. Very little is known of the mechanism of LPS perception by plants, although plant receptors for other MAMPs such as flagellin have been described. Recent work has implicated the Arabidopsis syntaxin PEN1 as a potential actor in LPS induction of plant defenses, which may suggest a role for vesicle trafficking in the signalling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Avr:

avirulence

CT:

p-coumaroyl tyramine

EF-Tu:

elongation factor Tu

Flg:

flagellin

FT:

feruloyl tyramine

HR:

hypersensitive response

ISR:

induced systemic resistance

LOS:

lipo-oligosaccharides

LPS:

lipopolysaccharides

LRR:

leucine rich repeat

MAMPs:

microbe associated molecular patterns

NBS:

nucleotide-binding site

NSF:

N-ethylmaleimide-sensitive factor

PGN:

peptidoglycan

PR:

pathogenesis-related

PRRs:

pattern recognition receptors

Pst :

Pseudomonas syringae pv. tomato

RLKs:

receptor-like kinases

ROS:

reactive oxygen species

SA:

salicylic acid

SAR:

systemic acquired resistance

SNAPs:

soluble N-ethylmaleimide-sensitive factor (NSF) adaptor proteins adaptor proteins

SNAREs:

soluble NSF adaptor protein (SNAP) receptors

TIR:

Toll/IL-1R

TLRs:

Toll-like receptors

TTSS:

type III secretion system

VAMP:

vesicle-associated membrane protein

Xcc :

Xanthomonas campestris pv. campestris

References

  • Alfano, J.R., Collmer, A. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42 (2004) 385–414.

    Article  PubMed  CAS  Google Scholar 

  • Aslam, S.N., Newman, M.A., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T., Jensen, T.T., De Castro, C., Ierano, T., Molinaro, A., Jackson, R.W., Knight, M.R., Cooper, R.M. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18 (2008) 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Assaad, F.F., Qiu, J.-L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., Somerville, C.R., Thordal-Christensen, H. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15 (2004) 5118–5129.

    Article  PubMed  CAS  Google Scholar 

  • Ausubel, F. Are innate immune signalling pathways in plants and animals conserved? Nat Immunol 6 (2005) 973–979.

    Article  PubMed  CAS  Google Scholar 

  • Bedini, E., De Castro, C., Erbs, G., Mangoni, L., Dow, J.M., Newman, M.-A., Parrilli, M., Unverzagt, C. Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J Am Chem Soc 127 (2005) 2414–2416.

    Article  PubMed  CAS  Google Scholar 

  • Bedini, E., Parrilli, M., Unverzagt, C. Oligomerization of a rhamnanic trisaccharide repeating unit of O-chain polysaccharides from phytopathogenic bacteria. Tetrahedron Lett 43 (2002) 8879–8882.

    Article  CAS  Google Scholar 

  • Bhat, R.A., Miklis, M., Schmelzer, E., Schulze-Lefert, P., Panstruga, R. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Plant Biol 102 (2005) 3135–3140.

    CAS  Google Scholar 

  • Braun, S.G., Meyer, A., Holst, O., Pühler, A., Niehaus, K. Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Mol Plant-Microbe Interact 18 (2005) 674–681.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, N.J., Govers, R., David, E., James, D.E. Regulated transport of the glucose transporter GLUT4. Nature 3 (2002) 267–277.

    CAS  Google Scholar 

  • Carpenter, S., O’Neill, L.A.J. How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 9 (2007) 1891–1901.

    Article  PubMed  CAS  Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Hückelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., Schulze-Lefert, P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425 (2003) 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E., Shibuya, N. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol 47 (2006) 1530–1540.

    Article  PubMed  CAS  Google Scholar 

  • Dow, J.M., Osbourn, A.E., Wilson, T.J.G., Daniels, M.J. A locus determining pathogenicity of Xanthomonas-campestris is involved in lipopolysaccharide biosynthesis. Mol Plant-Microbe Interact 8 (1995) 768–777.

    Article  PubMed  CAS  Google Scholar 

  • Dow, M., Newman, M.A., von Roepenack, E. The induction and modulation of plant defence responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38 (2000) 241–261.

    Article  PubMed  CAS  Google Scholar 

  • Erbs, G., Silipo, A., Aslam, S., De Castro, C., Liparoti, V., Flagiello, A., Pucci, P., Lanzetta, R., Parrilli, M., Molinaro, A., Newman, M.-A., Cooper, R.M. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomanas elicit innate immunity: Structure and activity. Chem Biol 15 (2008a) 438–448.

    Article  PubMed  CAS  Google Scholar 

  • Erbs, G., Tandrup Jensen, T., Silipo, A., Grant, W., Dow, J.M., Molinaro, A., Parrilli, M., Newman, M.A. An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microbes and Infection 10 (2008b) 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Geelen, D., Leyman, B., Batoko, H., Di Sansabastiano, G.-P., Moore, I., Blatt, M.R. The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: Evidence from competition with its cytosolic domain. Plant Cell 14 (2002) 387–406.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez, L., Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5 (2000) 1003–1011.

    Google Scholar 

  • Gross, A., Kapp, D., Nielsen, T., Niehaus, K. Endocytosis of Xathomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of N. benthamiana. New Phytol 165 (2005) 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Gutsmann, T, Schromm, A.B., Brandenburg, K. The physiochemistry of endotoxins in relation to bioactivity. J Med Microbiol 297 (2007) 341–352.

    Article  CAS  Google Scholar 

  • Hashimoto, C., Hudson, K.L., Anderson, K.V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52 (1988) 269–279.

    Article  PubMed  CAS  Google Scholar 

  • He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., Sheen, J. Specific bacterial suppressors of MAMP signalling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125 (2006) 563–575.

    Article  PubMed  CAS  Google Scholar 

  • Holst, H., Molinaro, A. Core region and lipid A components of lipopolysaccharides. In: Moran, A., Brennan, P., Holst, O., von Itszstein, M. (eds), Microbial Glycobiology: Structures, Relevance and Applications. Oxford, Elsevier (2009), pp. 803–820.

    Google Scholar 

  • Husebye, H., Halaas, Ø., Stenmark, H., Tunheim, G., Sandanger, Ø., Bogen, B., Brech, A., Latz, E., Espevik, T. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 25 (2006) 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Ialenti, A., Di Meglio, P., Grassia, G., Maffia, P., Di Rosa, M., Lanzetta, R., Molinaro, A., Silipo, A., Grant, W. and Ianaro, A. A novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36 (2006) 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Jamir, Y., Guo, M., Oh, H.S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M.B., Collmer, A., Alfano, J.R. Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37 (2004) 554–565.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C.A. The immune-system evolved to discriminate infectious nonself from non-infectious self. Immunol Today 13 (1992) 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.D.G., Dangl, J.L. The plant immune system. Nature 444 (2006) 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Kalde, M., Nühse, T.S., Findlay, K., Peck, S.C. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA 104 (2007) 11850–11855.

    Article  PubMed  CAS  Google Scholar 

  • Keshavarzi, M., Soylu, S., Brown, I., Bonas, U., Nicole, M., Rossiter, J., Mansfield, J. Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact 17 (2004) 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Bednarek, P., Schulze-Lefert, P. Secretory pathways in plant immune responses. Plant Physiol 147 (2008a) 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., El Kasmi, F., Jürgens, G., Parker, J., Panstruga, R., Lipka, V., Schulze-Lefert, P. Co-option of a default secretory pathway for plant immune responses. Nature 451 (2008b) 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 (1996) 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Leeman, M., Vanpelt, J.A., Denouden, F.M., Heinsbroek, M., Pahm, B., Schippers, B. Induction of systemic resistance against fusarium-wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85 (1995) 1021–1027.

    Article  CAS  Google Scholar 

  • Livaja, M., Zeidler, D., von Rad U., Durner, J. Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 213 (2008) 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Loppnow, H., Brade, H., Durrbaum, I., Dinarello, C.A., Kusumoto, S., Rietschel, E.T., Flad, H.D. IL-1 induction-capacity of defined lipopolysaccharide partial structures. J Immunol 142 (1989) 3229–3238.

    PubMed  CAS  Google Scholar 

  • Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (1997) 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, A., Pühler, A., Niehaus, K. The lipopolysaccharides of the hytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213 (2001) 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, T.E., Zeier, J. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141 (2006) 1666–1675.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, T.E., Zeier, J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50 (2007) 500–513.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12 (2004) 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Munford, R.S., Varley, A.W. Shield as signal: Lipopolysaccharide and the evolution of immunity to Gram-negative bacteria. PLos Pathog 2 (2006) 467–471.

    Article  CAS  Google Scholar 

  • Murray, R.Z., Wylie, F.G., Khromykh, T., Hume, D.A., Stow, J.L. Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis factor-α. J Biol Chem 280 (2005) 10478–10483.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.A., Dow, J.M., Molinaro, A., Parrilli, M. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13 (2007) 69–84.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.-A., von Roepenack-Lahaye, E., Parr, A., Daniels, M.J., Dow, J.M. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29 (2002) 485–497.

    Article  Google Scholar 

  • Newman, M.A., von Roepenack-Lahaye, E., Parr, A., Daniels, M.J., Dow, J.M. Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms. Mol Plant Microbe Interact 14 (2001) 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.A., Daniels, M.J., Dow, J.M. The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. Mol Plant-Microbe Interact 10 (1997) 926–928.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.A., Daniels, M.J., Dow, J.M. Lipopolysaccharide from Xanthomonas campestris induces defence-related gene expression in Brassica campestris. Mol Plant-Microbe Interact 8 (1995) 778–780.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., DebRoy, S., Lee, Y.H., Pumplin, N., Jones, J., He, S.Y. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313 (2006) 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger, T., Brunner, F. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5 (2002) 1–7.

    Article  Google Scholar 

  • Pagan, J.K., Wylie, F.G., Joseph, S., Widberg, C., Bryant, N.J., James, D.E., Stow, J.L. The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr Biol 13 (2003) 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., Schulze-Lefert, P. Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J Biol Chem 283 (2008) 26974–26984.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., van Wees, S.C.M., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, N., Weisbeek, P.J., van Loon, L.C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10 (1998) 1571–1580.

    PubMed  CAS  Google Scholar 

  • Prime-A-Plant Group: Conrath, U., Beckers, G.J.M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M.-A., Pieterse, C.M.J., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendelhenne, D., Zimmerli, L., Mauch-Mani, B. Priming: Getting ready, for battle. Mol Plant Microbe Interact 19 (2006) 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  • Raetz, C.R.H., Reynolds, C.M., Trent, M.S., Bishop, R.E. Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76 (2007) 295–329.

    Article  PubMed  CAS  Google Scholar 

  • Raetz, C.R.H., Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71 (2002) 635–700.

    Article  PubMed  CAS  Google Scholar 

  • Rallabhandi, P., Awomoyi, A., Thomas, K.E., Phalipon, A., Fujimoto, Y., Fukase, K., Kusumoto, S., Qureshi, N., Sztein, M.B., Vogel, S.N. Differential activation of human TLR4 by Escherichia coli and Shigella flexneri 2a lipopolysaccharide: Combined effects of lipid A acylation state and TLR4 polymorphisms on signaling. J Immunol 180 (2008) 1139–1147.

    PubMed  CAS  Google Scholar 

  • Rigano, L.A., Payette, C., Brouillard, G., Marano, M. R., Abramowicz, L., Torres, P. S., Yun, M., Castagnaro, A. P., El Oirdi, M., Dufour, V., Malamud, F. Dow, J. M., Bouarab K., Vojnov. A.A. Bacterial Cyclic β-(1, 2) Glucan Acts in Systemic Suppression of Plant Immune Responses. Plant Cell 19 (2007) 2077–2089.

    Article  PubMed  CAS  Google Scholar 

  • Robatzek, S., Bittel, P., Chinchilla, D., Köchner, P., Felix, G., Shiu, S.H., Boller, T. Molecular identification and characterization of the tomato flagellin LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64 (2007) 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Robatzek, S., Chinchilla, D., Boller, T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20 (2006) 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., Hunt, M.D. Systemic acquired resistance. Plant Cell 8 (1996) 1809–1819.

    PubMed  CAS  Google Scholar 

  • Sanderfoot, A.A., Assaad, F.F., Raikhel, N.V. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124 (2000) 1558–1569.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, M., Schweizer, P., Meuwly, P. and Métraux, J.P. Systemic acquired resistance in plants. Int Rev Cytol 168 (1996) 303–340.

    Article  CAS  Google Scholar 

  • Schromm, A.B., Brandenburg, K., Loppnow, H., Moran, A.P., Koch, M.H.J., Rietschel, E.Th., Seydel, U. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 267 (2000) 2008–2013.

    Article  PubMed  CAS  Google Scholar 

  • Schromm, A.B., Brandenburg, K., Loppnow, H., Zahringer, U., Rietschel, E.T., Carroll, S.F., Koch, M.H.J., Kusumoto, S., Seydel, U. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J Immunol 161 (1998) 5464–5471.

    PubMed  CAS  Google Scholar 

  • Silipo, A., Sturiale, L., Garozzo, D., Erbs, G., Tandrup Jensen T., Lanzetta, R., Dow, J.M., Parrilli, M., Newman M.A., Molinaro, A. The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. ChemBioChem 9 (2008) 896–904.

    Article  PubMed  CAS  Google Scholar 

  • Silipo, A., Sturiale, L., Garozzo D., de Castro, C., Lanzetta, R., Parrilli, M., Grant, W.D., Molinaro, A. Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas magadiensis strain 21 M1. Eur J Org Chem 2004 (2004) 2263–2271.

    Article  Google Scholar 

  • Silipo, A., Molinaro, A., Sturiale, L., Dow, J.M., Erbs, G., Lanzetta, R., Newman, M.-A., Parrilli, M. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280 (2005) 33660–33668.

    Article  PubMed  CAS  Google Scholar 

  • Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 362 (1993) 318–324.

    Article  PubMed  Google Scholar 

  • Thordal-Christensen, H. Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6 (2003) 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L.C., Bakker, P.A., Pieterse, C.M. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36 (1998) 453–483.

    Article  PubMed  Google Scholar 

  • Yun, M.H., Torres, P.S., El Oirdi, M., Rigano, L.A., Gonzalez-Lamothe, R., Marano, M.R., Castagnaro, A.P., Dankert, M.A., Bouarab, K., Vojnov, A.A., Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141 (2006) 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hertung, T., Bors, W., Hutzler, P., Durner, J. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101 (2004) 15811–15816.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., Felix, G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125 (2006) 749–760.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.E. and M.-A.N acknowledge funding by The Danish Council for Independent Research, Technology and Production Sciences (FTP). J.M.D. acknowledges funding by the Science Foundation of Ireland through Principal Investigator Awards 03/IN3/B373 and 07/IN.1/B955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Erbs, G., Molinaro, A., Dow, J., Newman, MA. (2010). Lipopolysaccharides and Plant Innate Immunity. In: Wang, X., Quinn, P. (eds) Endotoxins: Structure, Function and Recognition. Subcellular Biochemistry, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9078-2_17

Download citation

Publish with us

Policies and ethics