Skip to main content

The NlpD Lipoprotein of Yersinia pestis is Essential for Cell Separation and Virulence

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms

Abstract

The well-characterized virulence factors of Yersinia pestis the causative agent of plague are those encoded by the virulence plasmids. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the chromosomal pcm gene was disrupted. The pcm gene is located within a putative stress response locus that includes the surE, nlpD, and rpoS genes. In this study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis by constructing a set of isogenic surE, pcm, nlpD and rpoS mutants in the fully virulent Kimberley53 strain. We show that the NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The unsegmented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrate that the nlpD mutant could be used as a very potent live vaccine against bubonic and pneumonic plague.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, P. (1997) Kinase cascades regulating entry into apoptosis. Microbiol Mol Biol Rev, 61, 33–46.

    PubMed  CAS  Google Scholar 

  • Bateman, A. & Bycroft, M. (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol, 299, 1113–9.

    Article  PubMed  CAS  Google Scholar 

  • Bearden, S. W., Fetherston, J. D. & Perry, R. D. (1997) Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun, 65, 1659–68.

    PubMed  CAS  Google Scholar 

  • Bearden, S. W., Staggs, T. M. & Perry, R. D. (1998) An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol, 180, 1135–47.

    PubMed  CAS  Google Scholar 

  • Bernhardt, T. G. & De Boer, P. A. (2004) Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol, 52, 1255–69.

    Article  PubMed  CAS  Google Scholar 

  • Buist, G., Steen, A., Kok, J. & Kuipers, O. P. (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol, 68, 838–47.

    Article  PubMed  CAS  Google Scholar 

  • Flashner, Y., Mamroud, E., Tidhar, A., Ber, R., Aftalion, M., Gur, D., Lazar, S., Zvi, A., Bino, T., Ariel, N., Velan, B., Shafferman, A. & Cohen, S. (2004) Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun, 72, 908–15.

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev, 66, 373–95.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, M. & Elliott, T. (2005) Stationary-phase regulation of RpoS translation in Escherichia coli. J Bacteriol, 187, 7204–13.

    Article  PubMed  CAS  Google Scholar 

  • Inglesby, T. V., Dennis, D. T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Friedlander, A. M., Hauer, J., Koerner, J. F., Layton, M., Mcdade, J., Osterholm, M. T., O’toole, T., Parker, G., Perl, T. M., Russell, P. K., Schoch-Spana, M. & Tonat, K. (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. Jama, 283, 2281–90.

    Article  PubMed  CAS  Google Scholar 

  • Kajimura, J., Fujiwara, T., Yamada, S., Suzawa, Y., Nishida, T., Oyamada, Y., Hayashi, I., Yamagishi, J., Komatsuzawa, H. & Sugai, M. (2005) Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol Microbiol, 58, 1087–101.

    Article  PubMed  CAS  Google Scholar 

  • Lai, X., Weng, J., Zhang, X., Shi, W., Zhao, J., Wang, H. & Wang, H. (2006) MSTF: a domain involved in bacterial metallopeptidases and surface proteins, mycobacteriophage tape-measure proteins and fungal proteins. FEMS Microbiol Lett, 258, 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Lathem, W. W., Price, P. A., Miller, V. L. & Goldman, W. E. (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science, 315, 509–13.

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Llorens, J. M., Martinez-Garcia, E. & Tormo, A. (2002) Enterobacter cloacae rpoS promoter and gene organization. Arch Microbiol, 179, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C., Mungall, K. L., Baker, S., Basham, D., Bentley, S. D., Brooks, K., Cerdeno-Tarraga, A. M., Chillingworth, T., Cronin, A., Davies, R. M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Karlyshev, A. V., Leather, S., Moule, S., Oyston, P. C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S. & Barrell, B. G. (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523–7.

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim, S., Kolb-Maurer, A., Gentschev, I., Goebel, W. & Kuhn, M. (2003) Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun, 71, 3473–84.

    Article  PubMed  CAS  Google Scholar 

  • Robichon, C., Vidal-Ingigliardi, D. & Pugsley, A. P. (2005) Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem, 280, 974–83.

    Article  PubMed  CAS  Google Scholar 

  • Seydel, A., Gounon, P. & Pugsley, A. P. (1999) Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol, 34, 810–21.

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde, O. A., Subrahmanyam, Y. V., Stark, K., Quan, T., Bao, Y. & Goguen, J. D. (1992) A surface protease and the invasive character of plague. Science, 258, 1004–7.

    Article  PubMed  CAS  Google Scholar 

  • Tidhar, A., Flashner, Y., Cohen, S., Levi, Y., Zauberman, A., Gur, D., Aftalion, M., Elhanany, E., Zvi, A., Shafferman, A. & Mamroud, E. (2009) The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One, 4, e7023.

    Article  PubMed  Google Scholar 

  • Viboud, G. I. & Bliska, J. B. (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol, 59, 69–89.

    Article  PubMed  CAS  Google Scholar 

  • Visick, J. E., Cai, H. & Clarke, S. (1998) The L-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses. J Bacteriol, 180, 2623–9.

    PubMed  CAS  Google Scholar 

  • Welkos, S. L., Friedlander, A. M. & Davis, K. J. (1997) Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb Pathog, 23, 211–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Brut P. and Mrs. Stein D. for excellent technical assistance. We also thank Dr. François Norel from the Institute Pasteur Paris, France for the generous gift of RpoS antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avital Tidhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tidhar, A. et al. (2010). The NlpD Lipoprotein of Yersinia pestis is Essential for Cell Separation and Virulence. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_6

Download citation

Publish with us

Policies and ethics