Skip to main content

Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances

  • Conference paper
  • First Online:
  • 1075 Accesses

Abstract

The purpose of this contribution is twofold: firstly, to describe methods of preparation, physical chemical properties, and potential issues of injectable hydrogel-based formulations from a tissue engineering perspective, and, secondly, to highlight their nanotechnological features and future potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this case the use of a non-porous scaffold would be the best solution since porosity decreases mechanical properties.

  2. 2.

    References proposed in this sentence refer to nanomaterials that have been directly incorporated into HGs.

References

  • Ahmed TA, Griffith M, Hincke M (2007) Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng 13(7):1469–1477

    Article  CAS  Google Scholar 

  • Akbuga J, Ozbas-Turan S, Erdogan N (2004) Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression. Eur J Pharm Biopharm 58(3):501–507

    Article  CAS  Google Scholar 

  • An YH, Webb D, Gutowska A, Mironov VA, Friedman RJ (2001) Regaining chondrocyte phenotype in thermosensitive gel culture. Anat Rec 263(4):336–341

    Article  CAS  Google Scholar 

  • Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26(4):605–665

    Article  CAS  Google Scholar 

  • Anseth KS, Burdick JA (2002) New directions in photopolymerizable biomaterials. MRS Bull 27(2):130–136

    Article  CAS  Google Scholar 

  • Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    Article  CAS  Google Scholar 

  • Arevalo-Silva CA, Eavey RD, Cao Y, Vacanti M, Weng Y, Vacanti CA (2000) Internal support of tissue-engineered cartilage. Arch Otolaryngol Head Neck Surg 126(12):1448–1452

    CAS  Google Scholar 

  • Arica MY, Bayramoglu G, Arica B, Yalçin E, Ito K, Yagci Y (2005) Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics. Macromol Biosci 5(10):983–992

    Article  CAS  Google Scholar 

  • Arimura H, Ouchi T, Kishida A, Ohya Y (2005) Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable crosslinking agent. J Biomater Sci Polym Ed 16(11):1347–1358

    Article  CAS  Google Scholar 

  • Atala A, Lanza RP (eds) (2002) Methods in tissue engineering. Academic, San Diego, CA

    Google Scholar 

  • Baroli B (2006) Photopolymerization in drug delivery, tissue engineering and cell encapsulation: issues and potentialities. J Chem Technol Biotechnol 81(4):491–499

    Article  CAS  Google Scholar 

  • Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223

    Article  CAS  Google Scholar 

  • Baroli B, Shastri VP, Langer R (2003) A method to protect sensitive molecules from a light-induced polymerizing environment. J Pharm Sci 92(6):1186–1195

    Article  CAS  Google Scholar 

  • Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 123(3):219–227

    Article  CAS  Google Scholar 

  • Birla RK, Huang YC, Dennis RG (2007) Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng 13(9):2239–2248

    Article  CAS  Google Scholar 

  • Bjerkvig R, Read TA, Vajkoczy P, Aebischer P, Pralong W, Platt S, Melvik JE, Hagen A, Dornish M (2003) Cell therapy using encapsulated cells producing endostatin. Acta Neurochir Suppl 88:137–141

    CAS  Google Scholar 

  • Blanco MD, Garcia O, Rosa RM, Teijon JM, Katime I (1996) 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester. I. Acrylamide-co-monomethyl itaconate. Biomaterials 17(11):1061–1067

    Article  CAS  Google Scholar 

  • Bloch K, Vorobeychik M, Yavrians K, Azarov D, Bloch O, Vardi P (2006) Improved activity of streptozotocin-selected insulinoma cells following microencapsulation and transplantation into diabetic mice. Cell Biol Int 30(2):138–143

    Article  CAS  Google Scholar 

  • Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  CAS  Google Scholar 

  • Boucard N, Viton C, Domard A (2005) New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules 6(6):3227–3237

    Article  CAS  Google Scholar 

  • Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2):134–146

    Article  CAS  Google Scholar 

  • Brannon-Peppas L, Peppas NA (1990a) Dynamic and equilibrium swelling behavior of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11(9):635–644

    Article  CAS  Google Scholar 

  • Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam, pp 67–102

    Google Scholar 

  • Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31(3):197–221

    Article  CAS  Google Scholar 

  • Brown CD, Kreilgaard L, Nakakura M, Caram-Lelham N, Pettit DK, Gombotz WR, Hoffman AS (2001) Release of PEGylated granulocyte-macrophage colony-stimulating factor from chitosan/glycerol films. J Control Release 72(1–3):35–46

    Article  CAS  Google Scholar 

  • Bryant SJ, Nuttelman CR, Anseth KS (1999) The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels. Biomed Sci Instrum 35:309–314

    CAS  Google Scholar 

  • Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457

    Article  CAS  Google Scholar 

  • Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23(22):4315–4323

    Article  CAS  Google Scholar 

  • Burdick JA, Peterson AJ, Anseth KS (2001) Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 22(13):1779–1786

    Article  CAS  Google Scholar 

  • Burdick JA, Lovestead TM, Anseth KS (2003) Kinetic chain lengths in highly cross-linked networks formed by the photoinitiated polymerization of divinyl monomers: a gel permeation chromatography investigation. Biomacromolecules 4(1):149–156

    Article  CAS  Google Scholar 

  • Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric network. J Biomed Mater Res 23(10):1183–1193

    Article  CAS  Google Scholar 

  • Cao YL, Lach E, Kim TH, Rodriguez A, Arevalo CA, Vacanti CA (1998) Tissue-engineered nipple reconstruction. Plast Reconstr Surg 102(7):2293–2298

    Article  CAS  Google Scholar 

  • Cascone MG, Maltinti S, Barbani N, Laus M (1999) Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J Mater Sci Mater Med 10(7):431–435

    Article  CAS  Google Scholar 

  • Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials 28(34):5093–5099

    Article  CAS  Google Scholar 

  • Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia L (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res 51(1):107–116

    Article  CAS  Google Scholar 

  • Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6(12):1026–1039

    Article  CAS  Google Scholar 

  • Chen J, Jo S, Park K (1997) Degradable hydrogels. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Overseas Publishers Association, Amsterdam, pp 203–230

    Google Scholar 

  • Chen S, Pieper R, Webster DC, Singh J (2005) Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 288(2):207–218

    Article  CAS  Google Scholar 

  • Chen YM, Tanaka M, Gong JP, Yasuda K, Yamamoto S, Shimomura M, Osada Y (2007) Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28(10):1752–1760

    Article  CAS  Google Scholar 

  • Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6):763–739

    Article  CAS  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  Google Scholar 

  • Chinen N, Tanihara M, Nakagawa M, Shinozaki K, Yamamoto E, Mizushima Y, Suzuki Y (2003) Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release. J Biomed Mater Res A 67(1):61–68

    Article  CAS  Google Scholar 

  • Cho BC, Kim JY, Lee JH, Chung HY, Park JW, Roh KH, Kim GU, Kwon IC, Jang KH, Lee DS, Park NW, Kim IS (2004) The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg 15(2):299–311; discussion 312–333

    Google Scholar 

  • Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004b) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25(26):5743–5751

    Article  CAS  Google Scholar 

  • Choi S, Kim SW (2003) Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res 20(12):2008–2010

    Article  CAS  Google Scholar 

  • Choi SH, Yoon JJ, Park TG (2002) Galactosylated poly(N-isopropylacrylamide) hydrogel submicrometer particles for specific cellular uptake within hepatocytes. J Colloid Interface Sci 251(1):57–63

    Article  CAS  Google Scholar 

  • Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH (2005) Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater 9:58–67; discussion 67

    Google Scholar 

  • Clark RAF (2007) Special Issue, Natural and artificial cellular microenvironments for soft tissue repair. Adv Drug Deliv Rev 59(13):1291–1292

    Google Scholar 

  • Comisar WA, Kazmers NH, Mooney DJ, Linderman JJ (2007) Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28(30):4409–4417

    Article  CAS  Google Scholar 

  • Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, Vacant MP, Niles JA, Vacanti CA (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12(5):1213–1225

    Article  CAS  Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134

    Article  CAS  Google Scholar 

  • Cruise GM, Hegre OD, Scharp DS, Hubbell JA (1998) A sensitivity study of the key parameters in the interfacial photopolymerization of the poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 57(6):655–665

    Article  CAS  Google Scholar 

  • Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, Hubbell JA (2000) In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 8(3):293–306

    Google Scholar 

  • Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS (2006) Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med 17(12):1393–1401

    Article  CAS  Google Scholar 

  • Daronch M, Rueggeberg FA, Hall G, De Goes MF (2007) Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 23(10):1283–1288

    Article  CAS  Google Scholar 

  • Davalli AM, Galbiati F, Bertuzzi F, Polastri L, Pontiroli AE, Perego L, Freschi M, Pozza G, Folli F, Meoni C (2000) Insulin-secreting pituitary GH3 cells: a potential beta-cell surrogate for diabetes cell therapy. Cell Transplant 9(6):841–851

    CAS  Google Scholar 

  • De Laporte L, Shea LD (2007) Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):292–307

    Article  CAS  Google Scholar 

  • De Rosa M, Carteni’ M, Petillo O, Calarco A, Margarucci S, Rosso F, De Rosa A, Farina E, Grippo P, Peluso G (2004) Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation, and extracellular matrix production: Implications for tissue engineering. J Cell Physiol 198(1):133–143

    Article  CAS  Google Scholar 

  • De Wijn JR, van Mullem PJ (1990) In: Williams D (ed) Concise encyclopedia of medical and dental materials. MIT, Cambridge, pp 14–21

    Google Scholar 

  • Delgado JJ, Evora C, Sanchez E, Baro M, Delgado A (2006) Validation of a method for non-invasive in vivo measurement of growth factor release from a local delivery system in bone. J Control Release 114(2):223–229

    Article  CAS  Google Scholar 

  • Desai NP, Hubbell JA (1989) The short-term blood biocompatibility of poly(hydroxyethyl methacrylate-co-methyl methacrylate) in an in vitro flow system measured by digital videomicroscopy. J Biomater Sci Polym Ed 1(2):123–146

    Article  CAS  Google Scholar 

  • Desmangles AI, Jordan O, Marquis-Weible F (2001) Interfacial photopolymerization of beta-cell clusters: approaches to reduce coating thickness using ionic and lipophilic dyes. Biotechnol Bioeng 72(6):634–641

    Article  CAS  Google Scholar 

  • Díez-Peña E, Quijada-Garrido I, Barales-Rienda JM (2002) Hydrogen-bonding effects on the dynamic swelling of P(N-iPAAm-co-MAA) copolymers. A case of autocatalytic swelling kinetics. Macromolecules 35(23):8882–8888

    Article  CAS  Google Scholar 

  • Ding K, Alemdaroglu FE, Börsch M, Berger R, Herrmann A (2007) Engineering the structural properties of DNA block copolymer micelles by molecular recognition. Angew Chem Int Ed 46(7):1172–1175

    Article  CAS  Google Scholar 

  • Dobie K, Smith G, Sloan AJ, Smith AJ (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43(2–3):387–390

    CAS  Google Scholar 

  • Dodla MC, Bellamkonda RV (2006) Anisotropic scaffolds facilitate enhanced neurite extension in vitro. J Biomed Mater Res A 78(2):213–221

    Google Scholar 

  • Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29(1):33–46

    Article  CAS  Google Scholar 

  • Duncan AC, Sefton MV, Brash JL (1997) Effect of C4-, C8- and C18-alkylation of poly(vinyl alcohol) hydrogels on the adsorption of albumin and fibrinogen from buffer and plasma: limited correlation with platelet interactions. Biomaterials 18(24):1585–1592

    Article  CAS  Google Scholar 

  • Dunne NJ, Orr JF (2002) Curing characteristics of acrylic bone cement. J Mater Sci Mater Med 13(1):17–22

    Article  CAS  Google Scholar 

  • Duvvuri S, Janoria KG, Mitra AK (2005) Development of a novel formulation containing poly(d, l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J Control Release 108(2–3):282–293

    Article  CAS  Google Scholar 

  • Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4(4):298–302

    Article  CAS  Google Scholar 

  • Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96(6):3104–3107

    Article  CAS  Google Scholar 

  • Emerich DF, Salzberg HC (2001) Update on immunoisolation cell therapy for CNS diseases. Cell Transplant 10(1):3–24

    CAS  Google Scholar 

  • Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925

    Article  CAS  Google Scholar 

  • Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17):2706–2717

    Article  CAS  Google Scholar 

  • Flory PJ (1950) Statistical mechanics of swelling of network structure. J Chem Phys 18(1):108–111

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Flory PJ, Rehner J (1943a) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  CAS  Google Scholar 

  • Flory PJ, Rehner J (1943b) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11(11):521–526

    Article  CAS  Google Scholar 

  • Flory PJ, Rabjohn N, Schaffer MC (1949) Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J Polym Sci 4(3):225–245

    Article  CAS  Google Scholar 

  • Frimpong RA, Fraser S, Hilt JZ (2007) Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J Biomed Mater Res A 80(1):1–6

    Google Scholar 

  • Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073

    Article  CAS  Google Scholar 

  • Gajewiak J, Cai S, Shu XZ, Prestwich GD (2006) Aminooxy pluronics: synthesis and preparation of glycosaminoglycan adducts. Biomacromolecules 7(6):1781–1789

    Article  CAS  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  CAS  Google Scholar 

  • Gehrke SH, Fisher JP, Palasis M, Lund ME (1997) Factors determining hydrogel permeability. Ann N Y Acad Sci 831:179–207

    Article  CAS  Google Scholar 

  • Gemmell CH, Black JP, Yeo EL, Sefton MV (1996) Material-induced up-regulation of leukocyte CD11b during whole blood contact: material differences and a role for complement. J Biomed Mater Res 32(1):29–35

    Article  CAS  Google Scholar 

  • Ghosh K, Liu Y, Palumbo FS, Luo Y, Clark RA, Prestwich GD (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A 68(2):365–375

    Google Scholar 

  • Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3):601–613

    Article  CAS  Google Scholar 

  • Giavaresi G, Torricelli P, Fornasari PM, Giardino R, Barbucci R, Leone G (2005) Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials 26(16):3001–3008

    Article  CAS  Google Scholar 

  • Gil ES, Frankowski DJ, Spontak RJ, Hudson SM (2005) Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 6(6):3079–3087

    Article  CAS  Google Scholar 

  • Goodner MD, Bowman CN (2002) Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chem Eng Sci 57(5):887–900

    Article  CAS  Google Scholar 

  • Gu Z, Alexandridis P (2005) Drying of films formed by ordered poly(ethylene oxide)-poly(propylene oxide) block copolymer gels. Langmuir 21(5):1806–1817

    Article  CAS  Google Scholar 

  • Gu ZQ, Xiao JM, Zhang XH (1998) The development of artificial articular cartilage-PVA-hydrogel. Biomed Mater Eng 8(2):75–81

    CAS  Google Scholar 

  • Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96(3):463–472

    Article  CAS  Google Scholar 

  • Guenet JM (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London

    Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    CAS  Google Scholar 

  • Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, Zhang J (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials 27(7):1095–1103

    Article  CAS  Google Scholar 

  • Gupta V, Grande-Allen KJ (2006) Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375–383

    Article  CAS  Google Scholar 

  • Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, Yoo KJ, Putnam AJ, Kim BS (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29(7):844–856

    Article  CAS  Google Scholar 

  • Hahn MS, Teply BA, Stevens MM, Zeitels SM, Langer R (2006) Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials 27(7):1104–1109

    Article  CAS  Google Scholar 

  • Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, Prakash S (2005) In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 27(5):317–322

    Article  CAS  Google Scholar 

  • Hari PR, Ajithkumar B, Sharma CP (1993) Hydrogen grafted polymer surfaces: interaction and morphology of platelets. J Biomater Appl 8(2):174–182

    Article  CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2472–2479

    Article  CAS  Google Scholar 

  • He X, Jabbari E (2007) Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8(3):780–792

    Article  CAS  Google Scholar 

  • Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–16

    Article  CAS  Google Scholar 

  • Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276

    Article  CAS  Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12(5):1295–1304

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  • Holland TA, Mikos AG (2006) Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv Biochem Eng Biotechnol 102:161–185

    CAS  Google Scholar 

  • Holland TA, Tessmar JK, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94(1):101–114

    Article  CAS  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524. Erratum in: Nat Mater 5(7):590 (2006)

    Google Scholar 

  • Hong Y, Mao Z, Wang H, Gao C, Shen J (2006) Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. J Biomed Mater Res 79(4):913–922

    Article  CAS  Google Scholar 

  • Hong H, McCullough CM, Stegemann JP (2007) The role of ERK signaling in protein hydrogel remodeling by vascular smooth muscle cells. Biomaterials 28(26):3824–3833

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006) Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials 27(29):5089–5098

    Article  CAS  Google Scholar 

  • Hsieh CY, Hsieh HJ, Liu HC, Wang DM, Hou LT (2006) Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dent Mater 22(7):622–629

    Article  CAS  Google Scholar 

  • Hu SH, Liu TY, Liu DM, Chen SY (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189

    Article  CAS  Google Scholar 

  • Hubbell JA (1996) Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release 39(2):305–313

    Article  CAS  Google Scholar 

  • Hutmacher DW, Goh JC, Teoh SH (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 30(2):183–191

    CAS  Google Scholar 

  • Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27):3936–3943

    Article  CAS  Google Scholar 

  • Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24(8):1069–1077

    Article  CAS  Google Scholar 

  • Ito A, Akiyama H, Kawabe Y, Kamihira M (2007) Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J Biosci Bioeng 104(4):288–293

    Article  CAS  Google Scholar 

  • Jefferis CD, Lee AJC, Ling RSM (1975) Thermal aspects of self-curing poly(methyl methacrylate). J Bone Joint Surg 57B:511–518

    Google Scholar 

  • Jeong B, Bae YH, Kim SW (2000a) In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50(2):171–177

    Article  CAS  Google Scholar 

  • Jeong B, Bae YH, Kim SW (2000b) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63(1–2):155–163

    Article  CAS  Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51

    Article  CAS  Google Scholar 

  • Jeong JH, Kim S, Park TG (2004) Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharm Res 21(1):50–54

    Article  CAS  Google Scholar 

  • Johnson PM, Stansbury JW, Bowman CN (2007) Photopolymer kinetics using light intensity gradients in high-throughput conversion analysis. Polymer 48(21):6319–6324

    Article  CAS  Google Scholar 

  • Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77(10):3183–3188

    Article  CAS  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  Google Scholar 

  • Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743

    Article  Google Scholar 

  • Kawaguchi M, Fukushima T, Hayakawa T, Nakashima N, Inoue Y, Takeda S, Okamura K, Taniguchi K (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J 25(4):719–725

    Article  CAS  Google Scholar 

  • Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092

    Article  CAS  Google Scholar 

  • Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16(7):559–567

    Article  CAS  Google Scholar 

  • Kidoaki S, Matsuda T (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol 133(2):225–230

    Article  CAS  Google Scholar 

  • Kierszenbaum AL (2002) Histology and cell biology. An introduction to pathology. Mosby, St. Louis, MO

    Google Scholar 

  • Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4(5):1214–1223

    Article  CAS  Google Scholar 

  • Kim S, Chung EH, Gilbert M, Healy KE (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 75(1):73–88

    Google Scholar 

  • Kimura M, Fukumoto K, Watanabe J, Ishihara K (2004) Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed 15(5):631–644

    Article  CAS  Google Scholar 

  • Kimura M, Fukumoto K, Watanabe J, Takai M, Ishihara K (2005) Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Biomaterials 26(34):6853–6862

    Article  CAS  Google Scholar 

  • Kimura M, Takai M, Ishihara K (2007) Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. J Biomed Mater Res A 80(1):45–54

    Google Scholar 

  • Kirkpatrick CJ, Fuchs S, Hermanns MI, Peters K, Unger RE (2007) Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials 28(34):5193–5198

    Article  CAS  Google Scholar 

  • Ko HC, Milthorpe BK, McFarland CD (2007) Engineering thick tissues – the vascularisation problem. Eur Cell Mater 14:1–18; discussion 18–19

    Google Scholar 

  • Konno T, Ishihara K (2007) Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials 28(10):1770–1777

    Article  CAS  Google Scholar 

  • Kopeček J (2007) Hydrogel biomaterials: A smart future? Biomaterials 28(34):5185–5192

    Article  CAS  Google Scholar 

  • Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC (2003) Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc 125(32):9761–9769

    Article  CAS  Google Scholar 

  • Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186

    Article  CAS  Google Scholar 

  • Kůdela V (1989) In: Kroschwitz JI (ed) Polymers: biomaterials and medical applications. Wiley, New York, pp 228–252

    Google Scholar 

  • Kwon YM, Kim SW (2004) Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Pharm Res 21(2):339–343

    Article  CAS  Google Scholar 

  • Kwon IK, Matsuda T (2006) Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials 27(7):986–995

    Article  CAS  Google Scholar 

  • Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE (2007) Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43(2):137–147

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1995) Artificial organs. Sci Am 273(3):130–133

    CAS  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280(4):86–89

    Article  CAS  Google Scholar 

  • Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2007) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739

    Article  CAS  Google Scholar 

  • Lee KY, Peters MC, Anderson KW, Mooney DJ (2000a) Controlled growth factor release from synthetic extracellular matrices. Nature 408(6815):998–1000

    Article  CAS  Google Scholar 

  • Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000b) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71(3):418–424

    Article  CAS  Google Scholar 

  • Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Chung CP, Lee SJ (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78(1–3):187–197

    Article  CAS  Google Scholar 

  • Lee PY, Li Z, Huang L (2003) Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20(12):1995–2000

    Article  CAS  Google Scholar 

  • Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, Lee MC (2004) Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25(18):4163–4173

    Article  CAS  Google Scholar 

  • Lévesque SG, Shoichet MS (2007) Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bioconjug Chem 18(3):874–885

    Article  CAS  Google Scholar 

  • Li Z, Ning W, Wang J, Choi A, Lee PY, Tyagi P, Huang L (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20(6):884–888

    Article  CAS  Google Scholar 

  • Li F, Griffith M, Li Z, Tanodekaew S, Sheardown H, Hakim M, Carlsson DJ (2005) Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials 26(16):3093–3104

    Article  CAS  Google Scholar 

  • Li AA, Shen F, Zhang T, Cirone P, Potter M, Chang PL (2006) Enhancement of myoblast microencapsulation for gene therapy. J Biomed Mater Res B Appl Biomater 77(2):296–306

    Google Scholar 

  • Liao IC, Wan AC, Yim EK, Leong KW (2005) Controlled release from fibers of polyelectrolyte complexes. J Control Release 104(2):347–358

    Article  CAS  Google Scholar 

  • Liedl T, Dietz H, Yurke B, Simmel F (2007) Controlled trapping and release of quantum dots in a DNA-switchable hydrogel. Small 3(10):1688–1693

    Article  CAS  Google Scholar 

  • Lim SH, Liao IC, Leong KW (2006) Nonviral gene delivery from nonwoven fibrous scaffolds fabricated by interfacial complexation of polyelectrolytes. Mol Ther 13(6):1163–1172

    Article  CAS  Google Scholar 

  • Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408

    Article  CAS  Google Scholar 

  • Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126(1):104–110

    Article  Google Scholar 

  • Lin WC, Yu DG, Yang MC (2006) Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloids Surf B Biointerfaces 47(1):43–49

    Article  CAS  Google Scholar 

  • Liu L, Ratner BD, Sage EH, Jiang S (2007) Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir 23(22):11168–11173

    Article  CAS  Google Scholar 

  • Liu H, Wang C, Gao Q, Liu X, Tong Z (2008) Fabrication of novel core-shell hybrid alginate hydrogel beads. Int J Pharm 351(1–2):104–112

    Article  CAS  Google Scholar 

  • Llanos GR, Sefton MV (1992) Heparin-poly(ethylene glycol)-poly(vinyl alcohol) hydrogel: preparation and assessment of thrombogenicity. Biomaterials 13(7):421–424

    Article  CAS  Google Scholar 

  • Llanos GR, Sefton MV (1993) Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. J Biomed Mater Res 27(11):1383–1391

    Article  CAS  Google Scholar 

  • Loh NK, Woerly S, Bunt SM, Wilton SD, Harvey AR (2001) The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp Neurol 170(1):72–84

    Article  CAS  Google Scholar 

  • Lovell LG, Newman SM, Bowman CN (1999) The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. Dent Res 78(8):1469–1476

    Article  CAS  Google Scholar 

  • Lundskog J (1972) Heat and bone tissue. Scand J Plast Reconstr Surg Suppl 9:1–80

    CAS  Google Scholar 

  • Lustig SR, Peppas NA (1988) Solute diffusion in swollen membranes. 9. Scaling laws for solute diffusion in gels. J Appl Polym Sci 36:735–747

    Article  CAS  Google Scholar 

  • Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA (2003a) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    Article  CAS  Google Scholar 

  • Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003b) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418

    Article  CAS  Google Scholar 

  • Makino K, Hiyoshi J, Ohshima H (2001) Effects of thermosensitivity of poly (N-isopropylacrylamide) hydrogel upon the duration of a lag phase at the beginning of drug release from the hydrogel. Colloids Surf B Biointerfaces 20(4):341–346

    Article  CAS  Google Scholar 

  • Martina M, Hutmacher DW (2007) Biodegradabile polymers applied to tissue engineering research: a review. Polym Int 56(2):145–157

    Article  CAS  Google Scholar 

  • Mathews DT, Birney YA, Cahill PA, McGuinness GB (2008) Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and -insoluble chitosan. J Biomed Mater Res B Appl Biomater 84(2):531–540

    CAS  Google Scholar 

  • Mayer C (2005) Nanocapsules as drug delivery systems. Int J Artif Organs 28(11):1163–1171

    CAS  Google Scholar 

  • Mequanint K, Patel A, Bezuidenhout D (2006) Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels. Biomacromolecules 7(3):883–891

    Article  CAS  Google Scholar 

  • Michalakis K, Pissiotis A, Hirayama H, Kang K, Kafantaris N (2006) Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J Prosthet Dent 96(6):418–423

    Article  CAS  Google Scholar 

  • Mierisch CM, Cohen SB, Jordan LC, Robertson PG, Balian G, Diduch DR (2002) Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 18(8):892–900

    Article  Google Scholar 

  • Milam VT, Hiddessen AL, Crocker JC, Graves DJ, Hammer DA (2003) DNA-driven assembly of biodisperse, micron-sized colloids. Langmuir 19(24):10317–10323

    Article  CAS  Google Scholar 

  • Milella E, Barra G, Ramires PA, Leo G, Aversa P, Romito A (2001) Poly(L-lactide)acid/alginate composite membranes for guided tissue regeneration. J Biomed Mater Res 57(2):248–257

    Article  CAS  Google Scholar 

  • Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 57(2):268–278

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  CAS  Google Scholar 

  • Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399(6738):766–769

    Article  CAS  Google Scholar 

  • Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64(1):177–181

    Article  CAS  Google Scholar 

  • Moffatt S, Cristiano RJ (2006) PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells. Int J Pharm 317(1):10–13

    Article  CAS  Google Scholar 

  • Moss JA, Stokols S, Hixon MS, Ashley FT, Chang JY, Janda KD (2006) Solid-phase synthesis and kinetic characterization of fluorogenic enzyme-degradable hydrogel cross-linkers. Biomacromolecules 7(4):1011–1016

    Article  CAS  Google Scholar 

  • Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6(6):2927–2929

    Article  CAS  Google Scholar 

  • Murakami Y, Yokoyama M, Okano T, Nishida H, Tomizawa Y, Endo M, Kurosawa H (2007) A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A 80(2):421–427

    Google Scholar 

  • Murthy PS, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224

    Article  CAS  Google Scholar 

  • Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw 4(2):111–127

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90

    CAS  Google Scholar 

  • Nakama H, Ohsugi K, Otsuki T, Date I, Kosuga M, Okuyama T, Sakuragawa N (2006) Encapsulation cell therapy for mucopolysaccharidosis type VII using genetically engineered immortalized human amniotic epithelial cells. Tohoku J Exp Med 209(1):23–32

    Article  CAS  Google Scholar 

  • Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44(47):7686–7708

    Article  CAS  Google Scholar 

  • Nelson EW, Jacobs JL, Scranton AB, Anseth KS, Bowman CN (1995) Photo-differential scanning calorimetry studies of cationic polymerization of divinyl ethers. Polymer 36(24):4651–4656

    Article  CAS  Google Scholar 

  • Nerem RM (2007) Cell-based therapies: from basic biology to replacement, repair, and regeneration. Biomaterials 28(34):5074–5077

    Article  CAS  Google Scholar 

  • Neumann MG, Schmitt CC, Ferreira GC, Corrêa IC (2006) The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 22(6):576–584

    Article  CAS  Google Scholar 

  • Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M (2006) Bioactive hydrogel-filament scaffolds for nerve repair and regeneration. Int J Artif Organs 29(11):1082–1091

    CAS  Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Article  CAS  Google Scholar 

  • Noushi F, Richardson RT, Hardman J, Clark G, O’Leary S (2005) Delivery of neurotrophin-3 to the cochlea using alginate beads. Otol Neurotol 26(3):528–533

    Article  Google Scholar 

  • Novamatrix™, Norway (November 16, 2007) https://www.novamatrix.biz/default.asp?KategoriID=4&SubKategoriID=19&ArtikkelID=57

  • Odian G (1991) Principles of polymerization. Wiley, New York

    Google Scholar 

  • Oh KS, Han SK, Choi YW, Lee JH, Lee JY, Yuk SH (2004) Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system. Biomaterials 25(12):2393–2398

    Article  CAS  Google Scholar 

  • Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2(3):856–863

    Article  CAS  Google Scholar 

  • Orive G, Tam SK, Pedraz JL, Hallé JP (2006) Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 27(20):3691–3700

    Article  CAS  Google Scholar 

  • Ozbas-Turan S, Akbuga J, Aral C (2002) Controlled release of interleukin-2 from chitosan microspheres. J Pharm Sci 91(5):1245–1251

    Article  CAS  Google Scholar 

  • Paek HJ, Campaner AB, Kim JL, Aaron RK, Ciombor DM, Morgan JR, Lysaght MJ (2005) In vitro characterization of TGF-beta1 release from genetically modified fibroblasts in Ca(2+)-alginate microcapsules. ASAIO J 51(4):379–384

    Article  CAS  Google Scholar 

  • Pagoria D, Lee A, Geurtsen W (2005) The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage. Biomaterials 26(19):4091–4099

    Article  CAS  Google Scholar 

  • Park JH, Kwon S, Nam JO, Park RW, Chung H, Seo SB, Kim IS, Kwon IC, Jeong SY (2004a) Self-assembled nanoparticles based on glycol chitosan bearing 5beta-cholanic acid for RGD peptide delivery. J Control Release 95(3):579–588

    Article  CAS  Google Scholar 

  • Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M (2004b) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10(3–4):515–522

    Article  CAS  Google Scholar 

  • Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26(34):7095–7103

    Article  CAS  Google Scholar 

  • Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 43(Pt 1):17–24

    CAS  Google Scholar 

  • Patel PN, Gobin AS, West JL, Jr Patrick CW (2005) Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 11(9–10):1498–1505

    Article  CAS  Google Scholar 

  • Peirce SM, Price RJ, Skalak TC (2004) Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am J Physiol Heart Circ Physiol 286(3):H918–H925

    Article  CAS  Google Scholar 

  • Peppas NA (1986) Hydrogel in medicine and pharmacy. CRC, Boca Raton, FL

    Google Scholar 

  • Peppas NA, Colombo P (1997) Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J Control Release 45(1):35–40

    Article  CAS  Google Scholar 

  • Peppas NA, Merrill EW (1976) Poly(vinyl alcohol) hydrogels – reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci [A1] 14:441–457

    CAS  Google Scholar 

  • Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000a) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  Google Scholar 

  • Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000b) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  • Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 9(12):1267–1278

    Article  CAS  Google Scholar 

  • Petrini P, Tanzi MC, Moran CR, Graham NB (1999) Linear poly(ethylene oxide)-based polyurethane hydrogels: polyurethane-ureas and polyurethane-amides. J Mater Sci Mater Med 10(10/11):635–639

    Article  CAS  Google Scholar 

  • Pişkin E (2002) Biodegradable polymeric matrices for bioartificial implants. Int J Artif Organs 25(5):434–440

    Google Scholar 

  • Pişkin E (2004) Molecularly designed water soluble, intelligent, nanosize polymeric carriers. Int J Pharm 277(1–2):105–118

    Article  CAS  Google Scholar 

  • Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 6(2):632–637

    Article  CAS  Google Scholar 

  • Prestwich GD, Shu XZ, Liu Y, Cai S, Walsh JF, Hughes CW, Ahmad S, Kirker KR, Yu B, Orlandi RR, Park AH, Thibeault SL, Duflo S, Smith ME (2006) Injectable synthetic extracellular matrices for tissue engineering and repair. Adv Exp Med Biol 585:125–133

    Article  CAS  Google Scholar 

  • Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294(1–2):103–112

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  Google Scholar 

  • Quick DJ, Anseth KS (2003) Gene delivery in tissue engineering: a photopolymer platform to coencapsulate cells and plasmid DNA. Pharm Res 20(11):1730–1737

    Article  CAS  Google Scholar 

  • Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89(2):1374–1388

    Article  CAS  Google Scholar 

  • Ratner BD, Hoffman AS, Whiffen JD (1978) The thrombogenicity of radiation grafted polymers as measured by the vena cava ring test. J Bioeng 2(3–4):313–323

    CAS  Google Scholar 

  • Raymond J, Metcalfe A, Desfaits AC, Ribourtout E, Salazkin I, Gilmartin K, Embry G, Boock RJ (2003) Alginate for endovascular treatment of aneurysms and local growth factor delivery. AJNR Am J Neuroradiol 24(6):1214–1221

    Google Scholar 

  • Rizzi SC, Hubbell JA (2005) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6(3):1226–1238

    Article  CAS  Google Scholar 

  • Rokstad AM, Holtan S, Strand B, Steinkjer B, Ryan L, Kulseng B, Skjak-Braek G, Espevik T (2002) Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant 11(4):313–324

    Google Scholar 

  • Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB (2005) Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int J Pediatr Otorhinolaryngol 69(11):1489–1495

    Article  Google Scholar 

  • Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, Eavey RD (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10 Pt 1):1694–1697

    Article  CAS  Google Scholar 

  • Santiago LY, Nowak RW, Peter Rubin J, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15):2962–2969

    Article  CAS  Google Scholar 

  • Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4(1):11–16

    Article  CAS  Google Scholar 

  • ESB Satellite Consensus Conference (2005) Proceedings of “19th European Conference on Biomaterials”

    Google Scholar 

  • Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037

    Article  CAS  Google Scholar 

  • Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26(4):359–371

    Article  CAS  Google Scholar 

  • Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716

    Article  CAS  Google Scholar 

  • Shen F, Li AA, Cornelius RM, Cirone P, Childs RF, Brash JL, Chang PL (2005) Biological properties of photocrosslinked alginate microcapsules. J Biomed Mater Res B Appl Biomater 75(2):425–434

    Google Scholar 

  • Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York

    Google Scholar 

  • Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2):562–569

    Article  CAS  Google Scholar 

  • Sirpal S, Gattás-Asfura KM, Leblanc RM (2007) A photodimerization approach to crosslink and functionalize microgels. Colloids Surf B Biointerfaces 58(2):116–120

    Article  CAS  Google Scholar 

  • Sosnik A, Sefton MV (2006) Methylation of poloxamine for enhanced cell adhesion. Biomacromolecules 7(1):331–338

    Article  CAS  Google Scholar 

  • Starr FW, Sciortino F (2006) Model for assembly and gelation of four-armed DNA dendrimers. J Phys-Condens Mat 18(26):L347–L353

    Article  CAS  Google Scholar 

  • Stile RA, Healy KE (2002) Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. 1. Effects of linear poly(acrylic acid) chains on phase behavior. Biomacromolecules 3(3):591–600

    Article  CAS  Google Scholar 

  • Strzinar I, Sefton MV (1992) Preparation and thrombogenicity of alkylated polyvinyl alcohol coated tubing. J Biomed Mater Res 26(5):577–592

    Article  CAS  Google Scholar 

  • Sylven C (2002) Angiogenic gene therapy. Drugs Today 38(12):819–827

    Article  CAS  Google Scholar 

  • Tanahashi K, Mikos AG (2003) Protein adsorption and smooth muscle cell adhesion on biodegradable agmatine-modified poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res A 67(2):448–457

    Article  CAS  Google Scholar 

  • Tanaka S, Ogura A, Kaneko T, Murata Y, Akashi M (2004) Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels. Biomacromolecules 5(6):2447–2455

    Article  CAS  Google Scholar 

  • Tarle Z, Knezevic A, Demoli N, Meniga A, Sutaloa J, Unterbrink G, Ristic M, Pichler G (2006) Comparison of composite curing parameters: effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent 31(2):219–226

    Article  Google Scholar 

  • Tessmar JK, Göpferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):274–291

    Article  CAS  Google Scholar 

  • The Merriam-Webster online dictionary (November 15, 2007); http://www.m-w.com

  • Thomas J, Lowman A, Marcolongo M (2003) Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A 67(4):1329–1337

    Article  CAS  Google Scholar 

  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315(1):389–395

    Article  CAS  Google Scholar 

  • Tilakaratne HK, Hunter SK, Andracki ME, Benda JA, Rodgers VG (2007) Characterizing short-term release and neovascularization potential of multi-protein growth supplement delivered via alginate hollow fiber devices. Biomaterials 28(1):89–98

    Article  CAS  Google Scholar 

  • Trudel J, Massia SP (2002) Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials 23(16):3299–3307

    Article  CAS  Google Scholar 

  • Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22(5):405–412

    Article  CAS  Google Scholar 

  • Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1–2):29–64

    Article  CAS  Google Scholar 

  • Um SH, Lee JB, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalyzed assembly of DNA hydrogel. Nat Mater 5(10):797–801

    Article  CAS  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, Lancet 354(Suppl 1):SI32–34

    Google Scholar 

  • Vermette P, Gengenbach T, Divisekera U, Kambouris PA, Griesser HJ, Meagher L (2003) Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers. J Colloid Interface Sci 259(1):13–26

    Article  CAS  Google Scholar 

  • Vogelin E, Baker JM, Gates J, Dixit V, Constantinescu MA, Jones NF (2006) Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol 199(2):348–353

    Article  CAS  Google Scholar 

  • Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(6718):417–420

    Article  CAS  Google Scholar 

  • Wang X, Haasch RT, Bohn PW (2005) Anisotropic hydrogel thickness gradient films derivatized to yield three-dimensional composite materials. Langmuir 21(18):8452–8459

    Article  CAS  Google Scholar 

  • Wang M, Li Y, Wu J, Xu F, Zuo Y, Jansen JA (2008) In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite. J Biomed Mater Res A 85(2):418–426

    Google Scholar 

  • Wathier M, Johnson CS, Kim T, Grinstaff MW (2006) Hydrogels formed by multiple peptide ligation reactions to fasten corneal transplants. Bioconjug Chem 17(4):873–876

    Article  CAS  Google Scholar 

  • Webb AR, Yang J, Ameer GA (2004) Biodegradable polyester elastomers in tissue engineering. Expert Opin Biol Ther 4(6):801–812

    Article  CAS  Google Scholar 

  • Weber LM, Hayda KN, Haskins K, Anseth KS (2007) The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28(19):3004–3011

    Article  CAS  Google Scholar 

  • Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis MJ, Vacanti JP (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 38(4):555–563

    Article  CAS  Google Scholar 

  • Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  • Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26(11):1211–1218

    Article  CAS  Google Scholar 

  • Wu JY, Liu SQ, Heng PW, Yang YY (2005) Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Control Release 102(2):361–372

    Article  CAS  Google Scholar 

  • Xu C, Kopeček J (2008) Genetically engineered block copolymers: Influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly. Pharm Res 25(3):674–682

    Article  CAS  Google Scholar 

  • Xu C, Breedveld V, Kopecek J (2005) Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6(3):1739–1749

    Article  CAS  Google Scholar 

  • Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37(2):472–480

    Article  Google Scholar 

  • Yamamuro T, Nakamura T, Iida H, Kawanabe K, Matsuda Y, Ido K, Tamura J, Senaha Y (1998) Development of bioactive bone cement and its clinical applications. Biomaterials 19(16):1479–1482

    Article  CAS  Google Scholar 

  • Yang J, Xu C, Wang C, Kopecek J (2006) Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 7(4):1187–1195

    Article  CAS  Google Scholar 

  • Yasuhara T, Date I (2007) Intracerebral transplantation of genetically engineered cells for Parkinson’s disease: toward clinical application. Cell Transplant 16(2):125–132

    Google Scholar 

  • Yeo Y, Geng W, Ito T, Kohane DS, Burdick JA, Radisic M (2007) Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res B Appl Biomater 81(2):312–322

    Google Scholar 

  • Yoo MK, Kweon HY, Lee KG, Lee HC, Cho CS (2004) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol 34(4):263–270

    Article  CAS  Google Scholar 

  • Yu X, Dillon GP, Bellamkonda RB (1999) A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng 5(4):291–304

    Article  CAS  Google Scholar 

  • Zachos TA, Shields KM, Bertone AL (2006) Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins-2 or -6. J Orthop Res 24(6):1279–1291

    Article  CAS  Google Scholar 

  • Zelzer M, Majani R, Bradley JW, Rose FR, Davies MC, Alexander MR (2008) Investigation of cell-surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29(2):172–184

    Article  CAS  Google Scholar 

  • Zhang Y, Cheng X, Wang J, Wang Y, Shi B, Huang C, Yang X, Liu T (2006a) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344(1):362–369

    Article  CAS  Google Scholar 

  • Zhang X, Yu C, Xushi S, Zhang C, Tang T, Dai K (2006b) Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo. Biochem Biophys Res Commun 341(1):202–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by MIUR (PRIN 2005, project number: 2005035525) and Fondazione Banco di Sardegna (project number: 2003.0476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biancamaria Baroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Baroli, B. (2010). Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_17

Download citation

Publish with us

Policies and ethics