Skip to main content

Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo

  • Conference paper
  • First Online:
  • 1022 Accesses

Abstract

Extensive in-vitro and in-vivo evaluation of the biocompatibility of biomaterials intended for clinical applications is necessary to provide information on the interactions that take place between the organism and these materials under specific implant conditions. Sterilization of polymer-based implant materials is a basic requirement but can lead to their damage or destruction. Low-temperature plasma (LTP) or ethylene oxide (EO) sterilization are objects of intensive research and were applied on the materials used in this program. After 4 weeks of polymer incubation in minimal essential medium (MEM), samples, sterilized by LTP, gave a markedly higher mean cell lysis rate (3.7 ± 2.5%) than EO sterilized samples (0.9 ± 0.3%). To achieve relevant in-vitro results on biomaterial-cell interactions, biocompatibility testing was carried out with cultures of locotypical cells, e.g. cells of the upper aerodigestive tract (ADT). Primary cell cultures of the oral cavity, the pharynx and the esophagus showed region-typical varying relationships between epithelial, fibroblastic and smooth muscle cells. Proper wound healing is thought to be required for the integration of biomaterials and angiogenesis is a prerequisite for this process. A focus of the present work was the influence of polymer-based implant materials and their degradation products on angiogenesis in-vivo. After 48 h, none of the polymer samples demonstrated development of an avascular region in the chorioallantoic membrane (CAM) test. A key process in proper wound healing is the tightly controlled degradation and regeneration of the extracellular matrix (ECM). A biomaterial for the reconstruction of the upper ADT is subjected to varying pH values and enzymatic, bacterial and mechanical stress during the digestive and the swallowing process. These complex conditions can currently only be investigated in-vivo in an animal model. As a model the stomach of the rat was selected, in which a biomaterial can be investigated under extreme chemical, enzymatic, bacteriological and mechanical conditions. Other parameters investigated are the impermeability of the polymer-tissue closure and the tissue regeneration after defect reconstruction. The fluid tight integration of a long term resorbable AB-copolymer network in the surrounding tissue of the gastric wall of Sprague Dawley rats could be demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahsan T, Nerem RM (2005) Bioengineered tissues: the science, the technology, and the industry. Orthod Craniofac Res 8(3):134–140

    Article  CAS  Google Scholar 

  • Atala A (2005) Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 5(7):879–892

    Article  CAS  Google Scholar 

  • Bennett JH, Morgan MJ, Whawell SA, Atkin P, Roblin P, Furness J, Speight PM (2000) Metalloproteinase expression in normal and malignant oral keratinocytes: stimulation of MMP-2 and-9 by scatter factor. Eur J Oral Sci 108(4):281–291

    Article  CAS  Google Scholar 

  • Breymann C, Schmidt D, Hoerstrup S (2006) Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Rev 2(2):87–92

    Article  Google Scholar 

  • Burslem R, Stevenson P (2005) Plasma processing of surfaces. Med Device Technol 16(7):40–41

    Google Scholar 

  • Chou LS, Firth JD, Uitto VJ, Brunette DM (1998) Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts. J Biomed Mater Res 39(3):437–445

    Article  CAS  Google Scholar 

  • Clark RAF (1995) The molecular and cellular biology of wound repair. Plenum, New York

    Google Scholar 

  • El Mansouri H, Yagoubi N, Scholler D, Feigenbaum A, Ferrier D (1999) Propylene oligomers: extraction methods and characterization by FTIR, HPLC, and SEC. J Appl Polym Sci 71(3):371–375

    Article  Google Scholar 

  • Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16):3044–3063

    Article  CAS  Google Scholar 

  • Gall K, Yakacki CM, Liu YP, Shandas R, Willett N, Anseth KS (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A 73A(3):339–348

    Article  CAS  Google Scholar 

  • Goldman M, Gronsky R, Pruitt L (1998) The influence of sterilization technique and ageing on the structure and morphology of medical-grade ultrahigh molecular weight polyethylene. J Mater Sci Mater Med 9(4):207–212

    Article  CAS  Google Scholar 

  • Grierson JP, Meldolesi J (1995) Shear stress-induced [Ca2+](I) transients and oscillations in mouse fibroblasts are mediated by endogenously released Atp. J Biol Chem 270(9):4451–4456

    Article  CAS  Google Scholar 

  • Humes DH (2005) Stem cells: the next therapeutic frontier. Trans Am Clin Climatol Assoc 116:167–184

    Google Scholar 

  • ASTM International (1992) ASTM designation: F 813-83: standard practice for direct contact cell culture evaluation of materials for medical devices. ASTM International, pp 239–241

    Google Scholar 

  • Ioannidou E (2006) Therapeutic modulation of growth factors and cytokines in regenerative medicine. Curr Pharm Des 12(19):2397–2408

    Article  CAS  Google Scholar 

  • Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo [(epsilon-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8(3):1018–1027

    Article  CAS  Google Scholar 

  • Kume S (2005) Stem-cell-based approaches for regenerative medicine. Dev Growth Differ 47(6):393–402

    Article  CAS  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  Google Scholar 

  • Lemmon CA, Sniadecki NJ, Ruiz SA, Tan JL, Romer LH, Chen CS (2005) Shear force at the cell-matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2(1):1–16

    Google Scholar 

  • Lendlein A, Kelch S (2005a) Degradable, multifunctional polymeric biomaterials with shape-memory. Mater Sci Forum 492–493:219–223

    Google Scholar 

  • Lendlein A, Kelch S (2005b) Shape-memory polymers as stimuli-sensitive implant materials. Clin Hemoreol Microcirc 32(2):105–116

    CAS  Google Scholar 

  • Lendlein A, Neuenschwander P, Suter UW (2000) Hydroxy-telechelic copolyesters with well-defined sequence structure through ring-opening polymerization, Macromol Chem Phys 201(11):1067–1076

    Google Scholar 

  • Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98(3):842–847

    CAS  Google Scholar 

  • Lerouge S, Guignot C, Tabrizian M, Ferrier D, Yagoubi N, Yahia L (2000) Plasma-based sterilization: effect on surface and bulk properties and hydrolytic stability of reprocessed polyurethane electrophysiology catheters. J Biomed Mater Res 52(4):774–782

    Article  CAS  Google Scholar 

  • Messer RLW, Davis CM, Lewis JB, Adams Y, Wataha JC (2006) Attachment of human epithelial cells and periodontal ligament fibroblasts to tooth dentin. J Biomed Mater Res A 79A(1):16–22

    Article  CAS  Google Scholar 

  • Moses MA, Marikovsky M, Harper JW, Vogt P, Eriksson E, Klagsbrun M, Langer R (1996) Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing. J Cell Biochem 60(3):379–386

    Article  CAS  Google Scholar 

  • Mudera VC, Pleass R, Eastwood M, Tarnuzzer R, Schultz G, Khaw P, McGrouther DA, Brown RA (2000) Molecular responses of human dermal fibroblasts to dual cues: Contact guidance and mechanical load. Cell Motil Cytoskeleton 45(1):1–9

    Article  CAS  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  Google Scholar 

  • Nakashima Y, Sun DH, Maloney WJ, Goodman SB, Schurman DJ, Smith RL (1998) Induction of matrix metalloproteinase expression in human macrophages by orthopaedic particulate debris in vitro. J Bone Joint Surg Br 80B(4):694–700

    Article  Google Scholar 

  • Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem 46:73–84

    Article  CAS  Google Scholar 

  • Ravanti L, Kahari VM (2000) Matrix metalloproteinases in wound repair (Review). Int J Mol Med 6(4):391–407

    CAS  Google Scholar 

  • Reed JA, Patarca R (2006) Regenerative dental medicine: stem cells and tissue engineering in dentistry. J Environ Pathol Toxicol Oncol 25(3):537–569

    Article  Google Scholar 

  • Rickert D, Lendlein A, Kelch S, Fuhrmann R, Franke RP (2002) Detailed evaluation of the agarose diffusion test as a standard biocompatibility procedure using an image analysis system. Influence of plasma sterilization on the biocompatibility of a recently developed photoset-polymer. Biomed Technik 47(11):285–289

    CAS  Google Scholar 

  • Rickert D, Lendlein A, Peters I, Moses MA, Franke RP (2006a) Biocompatibility Testing of Novel Multifunctional Polymeric Biomaterials for Tissue Engineering Applications in Head and Neck Surgery: An Overview. Eur Arch Oto-Rhino-Laryn 263(3):215–222

    Article  Google Scholar 

  • Rickert D, Franke RP, Fernandez CA, Kilroy S, Yan L, Moses MA (2007a) Establishment and biochemical characterization of primary cells of the upper aerodigestive tract. Clin Hemorheol Microcirc 36(1):47–64

    CAS  Google Scholar 

  • Rickert D, Scheithauer MO, Coskun S, Kelch S, Lendlein A, Franke RP (2007b) The influence of a novel, polymeric biomaterial on the concentration of acute phase proteins in an animal model. Clin Hemorheol Microcirc 36(4):301–311

    CAS  Google Scholar 

  • Rickert D, Scheithauer MO, Coskun S, Lendlein A, Kelch S, Franke RP (2006b) First results of the investigation of the stability and tissue integration of a degradable, elastomeric copolymer in an animal model. Biomed Tech 51(3):116–124

    Article  CAS  Google Scholar 

  • Rickert D, Lendlein A, Schmidt AM, Kelch S, Roehlke W, Fuhrmann R, Franke RP (2003) In vitro cytotoxicity testing of AB-polymer networks based on oligo(epsilon-caprolactone) segments after different sterilization techniques. J Biomed Mater Res B 67B(2):722–731

    Article  CAS  Google Scholar 

  • Shastri VP, Lendlein A (2009) Materials in regenerative medicine. Adv Mater 21(32–33): 3231–3234

    Article  CAS  Google Scholar 

  • Shen JY, Pan XY, Lim CH, Chan-Park MB, Zhu X, Beuerman RW (2007) Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate. Biomacromolecules 8(2):376–385

    Article  CAS  Google Scholar 

  • Sieminski AL, Gooch KJ (2000) Biomaterial-microvasculature interactions. Biomaterials 21(22):2233–2241

    Article  CAS  Google Scholar 

  • Simmons A, Hyvarinen J, Poole-Warren L (2006) The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Biomaterials 27(25):4484–4497

    Article  CAS  Google Scholar 

  • Singer AJ, Clark RAF (1999) Mechanisms of disease – cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  Google Scholar 

  • Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 136(19–20):293–301

    CAS  Google Scholar 

  • Stangegaard M, Wang Z, Kutter JP, Dufva M, Wolff A (2006) Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces. Mol Biosyst 2(9):421–428

    Article  CAS  Google Scholar 

  • Stayton PS, El-Sayed MEH, Murthy N, Bulmus V, Lackey C, Cheung C, Hoffman AS (2005) ‘Smart’ delivery systems for biomolecular therapeutics. Orthod Craniofac Res 8(3):219–225

    Article  CAS  Google Scholar 

  • Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW (2001) Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol 144(2):229–237

    Article  CAS  Google Scholar 

  • Vaalamo M, Leivo T, Saarialho-Kere U (1999) Differential expression of tissue inhibitors of metalloproteinases (TIMP-1,-2,-3, and-4) in normal and aberrant wound healing. Hum Pathol 30(7):795–802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Rickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rickert, D., Fuhrmann, R., Hiebl, B., Lendlein, A., Franke, RP. (2010). Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_14

Download citation

Publish with us

Policies and ethics